
Conceptual design of discrete-event systems

using templates

by

Lenko Grigorov Grigorov

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

August 2009

Copyright c© Lenko Grigorov Grigorov, 2009

Abstract

This work describes the research conducted in the quest for designing better software

for discrete-event system (DES) control. The think-aloud data from an exploratory

observational study of solving DES control problems contributed to the formulation

of a list of recommendations on how to design and improve DES software. These

observations, together with other relevant research, led to the proposal of a novel

approach to DES problem solving, namely, the template design methodology. This

methodology does not require the introduction of new control theory; it is rather

an reinterpretation of the existing modelling framework. Software supporting this

methodology was implemented and subsequently evaluated using twelve subjects.

Significant improvements in the speed of problem solving as well as positive evalua-

tions by the subjects were observed. The usability data do not show any drawbacks

to applying the methodology.

i

Acknowledgments

I would like to thank foremost my supervisor, Dr. Karen Rudie, for her dedication as

a supervisor, for the encouragements I received, and for her cheerfulness and sense of

humor which helped me in the completion of this work.

I would also like to thank for the professional help of everyone who helped shape

this work. My supervisory committee included Dr. Brian Butler, Dr. Janice Glasgow

and Dr. Kai Salomaa from Queen’s University, Canada. The advices of all of them

were very valuable in making some critical decisions. The examination committee at

my defence included Dr. Martin Fabian from Chalmers University of Technology, Swe-

den and Dr. Roger Browse, Dr. William Egnatoff, Dr. Juliana Ramsay and Dr. Robert

Tennent from Queen’s University, Canada. To them I thank for all the suggestions

which helped improved the quality of this work. Other people who contributed with

advice or otherwise include: Dr. Knut Åkesson from Chalmers University of Technol-

ogy, Sweden, Dr. Dorothea Blostein from Queen’s University, Canada, Dr. Eduardo

Carrilho from the Military Institute of Engineering, Brazil, Daniel Cownden from

Queen’s University, Canada, Dr. José Cury from the Federal University of Santa

Catarina, Brazil, Steffi Klinge from Otto-von-Guericke University, Germany, Guil-

herme Lise and Luis Marques from the Federal University of Santa Catarina, Brazil,

Dr. Kathleen Norman from Queen’s University, Canada, Dr. Greg Phillips from the

Royal Military College, Canada, and Dr. Max de Queiroz and Francisco da Silva

from the Federal University of Santa Catarina, Brazil. I also acknowledge the help of

my colleagues Anthony Auer, Christopher Dragert, Sarah-Jane Whittaker and Creag

ii

Winacott with whom we had fruitful discussions, and the help of all volunteers who

participated in the studies which form an essential part of this work.

Last but not least, I would like to thank my family and friends without whom the

Ph.D. life would have been much harder.

iii

Statement of Originality

I hereby declare that I am the sole author of this thesis and the research described

herein. Parts of this research have been conducted under the supervision of Karen

Rudie, Queen’s University, Kingston, Ontario, Canada and José E. R. Cury, Federal

University of Santa Catarina, Florianópolis, Santa Catarina, Brazil. I hereby also

acknowledge that the data from the studies described in the thesis were collected

from the participants in these studies.

Parts of this thesis have been published elsewhere, as indicated where relevant.

iv

Preface

The donkey swung its tail and looked at the owl once more.

“Hmm. . . I still don’t understand. You say you manage the forest?”

“Look, it’s simple,” answered the owl. “From up there, in the sky, I can see

everything. I can see where the little lake is, where the patch of oak trees is. . . I can

even see the path from your house to the candy store.”

“Really?!”

“So, then it’s easy to see where I need to plant more trees,” continued the owl.

“Do you remember the storm last week that broke all the young pines on the East

side of the hill?”

The donkey nodded.

“Well, yesterday I took some pine cones from my closet, flew over to the place,

and planted them. In a few years, we’ll have new pine trees—exactly the same as

before.”

“Not that I understand anything about pine cones. . . ” murmured the donkey,

hoping that the owl would not hear him.

The owl continued excitedly. “Yes, from up there you can see everything! I even

noticed that the turtle has to go around the hill to get to the store. Me and the lion

planned a different route—straight through the meadow—which will save the turtle

a lot of time.”

As the owl talked with glistering eyes, the donkey looked to the berry bushes and

thought. “Will the owl be able to plant some more of these?”

v

Table of Contents

Abstract i

Acknowledgments ii

Statement of Originality iv

Preface v

Table of Contents vi

List of Tables ix

List of Figures x

Chapter 1:

Introduction . 1

Chapter 2:

Literature Review . 7

2.1 Discrete-Event Systems . 7

2.2 Human Problem-Solving . 14

2.3 User Interfaces . 26

vi

Chapter 3:

Recommendations for Improvement of DES Software . 31

3.1 Motivation . 32

3.2 Recommendations for IDES . 40

3.3 Implementation . 53

Chapter 4:

Template Design Methodology 59

4.1 Preliminaries . 60

4.2 Template Design of DESs . 63

4.3 Summary . 73

Chapter 5:

Implementation of the Template Design Methodology . 74

5.1 IDES Software . 74

5.2 Prototype Tool for Template Design 76

5.3 Implementation . 79

Chapter 6:

Evaluation of the Template Design Methodology 100

6.1 Method . 100

6.2 Results . 116

6.3 Discussion and Conclusions . 127

Chapter 7:

Conclusions . 132

vii

7.1 Other Lessons . 133

7.2 Future Work . 135

Bibliography . 138

Appendices . 147

Chapter A:

Problem Definitions . 147

A.1 Practise Problem . 147

A.2 Problem 1: Factory Problem . 148

A.3 Problem 2: Spooler Problem . 149

Chapter B:

Questionnaires . 151

B.1 Feedback Questionnaire — Task 1 . 151

B.2 Feedback Questionnaire — Task 2 . 152

viii

List of Tables

3.1 Recommendations for changes or new features in IDES 42

6.1 Self-reported background information about the subjects 113

6.2 Times taken by subjects . 119

6.3 Results of the mixed factorial ANOVA test of the time to supervisor

computation . 120

6.4 Results of the mixed factorial ANOVA test of the time to completion 121

6.5 The error rates for the solutions of the subjects 122

6.6 The answers of the subjects to the scaled questions from the question-

naires in Appendix B . 124

6.7 Aggregated responses to the two open-ended questions from the ques-

tionnaires in Appendix B . 125

6.8 Counts of how many subjects mentioned a given feature as a contribu-

tion of the template design methodology 126

6.9 SUS scores for IDES with the TD plugin 126

ix

List of Figures

2.1 DES model of a customer in a store 11

3.1 Reproductions of some of the diagrams created by subjects when solv-

ing the hospital problem. 37

3.2 The user interface in IDES 3 for the selection of an unbounded number

of inputs for operations which support it 55

3.3 The tab with notices . 56

3.4 The pop-up window in the lower-right corner of the main window,

notifying of new notices . 57

4.1 The modules and specifications used to illustrate the template design

methodology . 65

4.2 The synchronized version of E1 . 68

4.3 The supervisor for G1
spec with respect to G1

sys 70

5.1 The interface of the prototype template design software 76

5.2 The robotic testbed where template design was applied 78

5.3 The user interface of the template design plugin 84

5.4 The template design modelling area 85

5.5 The template library . 90

x

5.6 Two instances of the same template 91

5.7 The list of consistency issues for template designs 92

xi

Chapter 1

Introduction

The computerization and digitization of all aspects of our lives is an undeniable re-

sult of the technological advances during the last few decades. Unfortunately, as

researchers in Human-Computer Interaction (HCI) point out [18, 78], our under-

standing of the human factors in computer use and in information visualization is

very rudimentary. There are no central theories which reliably and robustly describe

human thinking and performance when dealing with a complex and interactive device

such as a computer. This leaves most computer interface designers with the only op-

tion of relying on their intuition of what is appropriate design. This frequently leads

to problematic interface designs because of insufficient understanding of the needs of

the users [83]. Unfortunately, the use of a computer is unavoidable for the solution

of certain problems—even if the interfaces of the available software packages are very

contrived.

An example of a field of work where computers are indispensable is the field of

Control of Discrete-Event Systems (DESs) [10]. Many systems can be modelled as

DESs, including manufacturing equipment, avionics, network protocols and logistic

1

CHAPTER 1. INTRODUCTION 2

operations. Using the tools in the DES supervisory control theory then allows for

the automatic construction of correct and optimal controllers. Unfortunately, the

problems which need to be solved may involve computations over enormous discrete

sets with more than 106 elements [36, 57]. These computations are clearly outside the

capabilities of human agents (if one is to keep the expenses reasonable). In the field

of DES control there has been a long-recognized need for better software tools [9].

In most DES software, the central role is assumed by the implementation of different

computational algorithms; such is the case with the TCT [14] and UMDES [86] tools,

for example. However, the implementation only of algorithms proves to be insufficient

to aid in real-world problem solving. In [21], the authors evaluate the elementary

interface of the TCT software and determine that its usability is very low, despite

the excellent implementation of the DES algorithms. Similarly, the development of

the next generation, graphical DES software has been driven by the need of users to

visualize better the models and operations they work with. For example, the Desco

software [23] and later the Supremica software [1] were developed to address issues

surrounding the application of the DES supervision.

The IDES software developed at Rudie’s research laboratory, [73], also offers a

graphical user interface. One of the main goals set at its conception was to center

the design of the software around usability. Thus, the development of the tool has

been more balanced, where functionality has been introduced at a slower rate than for

other tools (e.g., at the time of writing, IDES still does not offer a full array of DES

operations) but each feature in the interface has been carefully reviewed. However,

it seems that merely providing a graphical environment is not sufficient to resolve

all problems with the application of DES theory. The modelling, even when done

CHAPTER 1. INTRODUCTION 3

graphically, is still much too sensitive to errors. Even a single error in one of the

models may render the whole solution of a control problem incorrect. Adding to this

complication, in most cases the solutions to problems are too large to be compre-

hended in their entirety, and thus verification becomes very hard. Lastly, even if a

correct (or desired) solution is obtained, due to the specificity of models and events,

it is not simple to reuse the solution in another project. This makes the application

of DES control very difficult for humans, even if all underlying functionality is imple-

mented. In order to resolve these issues, it is necessary to understand the origins of

the difficulties humans experience when working on DES control problems.

Previous to our work, [35, 32], investigation of problem solving and human factors

in the field of DES control, to our best knowledge, has not been done. The publica-

tions closest to this topic pertain to the teaching of DES to students and the design

of DES software. In [24], for example, a graduate course in DES control is described.

The article describes the topics covered by the course and the software used by the

students, however, it does not discuss the relative difficulty of the topics as experi-

enced by the students or the points of the material which the students consistently

had problems understanding. In [1], the authors mention on a number of occasions

that the design of their software has been informed by their experience with teaching

DES theory. Unfortunately, again, they do not elaborate on their observations and

instead only list the features of the software. In [97], the author draws attention to

some important aspects of designing and applying DES control. For example, how

one constructs the event set to be used in modelling has a significant impact on how

it is possible to reason about the problem later on. Furthermore, the work demon-

strates that solving a DES problem may involve a number of iterations where not

CHAPTER 1. INTRODUCTION 4

only the problem influences the solution (as expected), but the solution influences

the problem as well. However, these insights do not provide enough information on

the DES problem-solving strategies.

At the onset of the research described in this work, it seemed to us that a more

thorough investigation of problem solving in DES has been long overdue. In order to

develop the next generation of DES software which goes beyond a simple collection

of algorithms (with or without a graphical modelling environment), it was necessary

to understand how people deal with DES control problems. Our ultimate goal was to

make use of this knowledge to guide the extension of the IDES software package so

that using it makes DES problem solving simpler, faster, and more reliable. To this

end, we conducted an exploratory observational study of DES problem solving and

we analysed the collected data [32].

Based on our observations in [32] and inspired by the work of Santos et al. [75], here

we propose a new approach to DES problem solving within the standard supervisory

control framework, namely, the template design methodology. There are two main

ingredients in the methodology: high-level conceptual modelling and the availability

of templates. The high-level design consists of entities and connections between them.

Entities are simply finites-state models which, as in the classical framework, can

describe either components of the system or components of the control specifications.

We call the system components modules and the specification components channels,

as the control specifications serve to define the protocols of interaction between system

components. Unlike the classical framework, synchronization between DES entities is

not done directly via event name equivalences. Rather, separate event name maps are

created, and the connections between modules and channels serve as the embodiment

CHAPTER 1. INTRODUCTION 5

of these maps. The use of connections makes the reconfiguration of high-level designs

easy and fast. This not only simplifies the sharing and reuse of models, but also

enables the introduction of templates. Templates are designated finite-state models

which describe the behavior of commonly used components. For example, if a factory

has a number of the same robots, a template can be created describing the generic

behavior of this type of robot. During modelling, templates can be instantiated, i.e.,

copies of the template models can be made. For example, in order to model all

the similar robots on the factory floor, it will be sufficient to instantiate the robot

template the corresponding number of times. The availability of templates simplifies

the process of modelling and reduces the opportunities of making errors. Furthermore,

the users of the software no longer need to be experts in creating low-level finite-state

models in order to design control solutions.

We implemented the proposed methodology as an extension of IDES, in the form

of a plugin. In order to evaluate the usability of the new tool, and of the method-

ology, we performed an experiment involving twelve participants. The participants

were asked to solve two DES problems each, where one of the problems had to be

solved using the classical approach (using IDES without the template design plugin)

and the other problem had to be solved using the template design methodology (using

IDES with the template design plugin). Different measures of usability were collected

via questionnaires. Three measures—speed, experiential ease of use, and System Us-

ability Scale scores [7]—showed improvement when the template design methodology

was used. The evaluation did not discover any negative impacts in using the proposed

methodology in comparison to the classical approach.

The main contributions of our work include:

CHAPTER 1. INTRODUCTION 6

• Description of recommendations for the implementation of DES software based

on observations of DES problem solving,

• Proposal of a novel method, called template design, for the design of DES

control solutions,

• Implementation and evaluation of the proposed method in order to validate it.

The rest of this dissertation is organized as follows. Chapter 2 contains a re-

view of relevant background information. A list of recommendations for IDES, and

DES software in general, based on the observational study in [32] is given in Chap-

ter 3. As well, in Chapter 3 we discuss the motivation behind these recommendations

and behind the proposal of the template design methodology. The template design

methodology itself is described in Chapter 4, while the subsequent implementation is

described in Chapter 5. Then, in Chapter 6, we discuss the results of the usability

evaluation of the template design software tool. We conclude with Chapter 7. The

appendices at the end list the problems and questionnaires administered during the

evaluation from Chapter 6.

Some parts of this work have already been published in [35, 33, 34]. Additional

details of the work can be found in [32, 31].

Chapter 2

Literature Review

2.1 Discrete-Event Systems

The process of computerization and digitalization of devices and protocols implies,

at a low level, the discretization of the process or device which will be controlled.

While Classical Control Theory deals with the control of continuous systems, a new

approach is necessary for the control of discrete systems. In the 1980s, Ramadge and

Wonham published a number of very influential articles [67, 95, 68]. They proposed a

framework for the control of a class of discrete systems, called Discrete-Event Systems

(DESs).

Discrete-Event Systems are systems where events (changes of state) occur sequen-

tially and asynchronously. For example, an elevator in a building can be modeled as

a DES. The events would be the opening and closing of the doors, the pressing of

the buttons, the arrival at a floor, etc. The states of the system would include infor-

mation about requests for a stop at different floors, the position of the elevator, the

direction in which it moves, etc. Events occur sequentially: the model does not allow

7

CHAPTER 2. LITERATURE REVIEW 8

the simultaneous pressing of two buttons (in reality, the low-level event processing

unit ensures the sequencing of events). Also, events are asynchronous because, for the

purpose of the model, it does not matter how much time passes between two events.

Even though an elevator is a much more complicated system, in reality, the electronic

control of elevators uses a model similar to the one described. There are many ways

to model DESs, including Petri nets [61], fuzzy matrices [54], and temporal logic

[82]. However, the most commonly used and natural model is that of an automaton

and, for practical purposes, a finite-state automaton (FSA). The latter is also used

in the Ramadge and Wonham framework. Synchronous languages such as Esterel [5]

and Signal [37] may also be suitable for the description of DESs. These languages

allow the description of reactive systems, where input signals trigger the synchronous

computation of output signals; in essence input signals can be viewed as event occur-

rences. In the case of Esterel, the source code can be efficiently translated into an

FSA. However, such an FSA would describe only an abstraction of the correspond-

ing program. Namely, Esterel uses integers, valued signals, and execution statements

(to call functions external to the language)—all of which preclude complete encoding

in a finite structure. As a consequence, the FSA abstractions of Esterel programs

are not suitable for the synthesis of correct and optimal supervisors as done in the

Ramadge and Wonham framework. For example, there are properties of supervisory

control solutions (such as non-blocking, which is described later in this section) which

require checking whether the system can advance from a particular state. In the

general case, it is not possible to determine if an integer signal will have a specific

value under runtime conditions; thus, in the FSA abstraction, it is not possible to

predict if the system will be able to advance from a state which has a single outgoing

CHAPTER 2. LITERATURE REVIEW 9

transition, where the transition is conditioned on an integer signal. The problem

of applying supervisory control to reactive systems is overcome, to some extent, by

Marchand et al. who succeed in introducing controller synthesis techniques to Signal

[59]. They take advantage of the polynomial dynamical system abstractions of Signal

programs to which they attach additional control conditions. With this methodology,

it is possible to synthesize controllers for invariance, reachability and attractivity over

the states of the system. The main problem of abstracting away potentially signifi-

cant behavior, however, remains. As the authors explain, for the numerical functional

behavior of Signal programs, only the synchronization properties of the signals can

be part of the control specifications. In the rest of this work we will focus on the

Ramadge and Wonham framework for DES control as the theoretical research done

within it is one of the most extensive and comprehensive.

An FSA is a tuple G = (Σ, Q, δ, q0, Qm), where Σ is a finite set of symbols (also

referred to as the “alphabet”), Q is a finite set of states, δ : Q × Σ → Q is a partial

transition function, q0 is the initial state and Qm ⊆ Q is the set of marked states.

The “empty symbol” ǫ, which is not in Σ, is used to denote a string of symbols with

length zero. The notation Σ∗ stands for the set of all finite strings of symbols from

Σ and ǫ. The transition function δ can be naturally extended to Q × Σ∗ → Q. Such

an FSA can be interpreted as a DES if the states are considered to be states of the

system and the symbols from Σ to be the events which can occur in the system. Thus,

strings of symbols would describe sequences of events.

The language L(G) is defined to be the set of all possible sequences of events in

the system. The FSA G is said to generate L(G). The language Lm(G) is defined to

be the set of all sequences of events which lead to a marked state. The FSA G is said

CHAPTER 2. LITERATURE REVIEW 10

to accept Lm(G). More formally,

L(G) = {s | s ∈ Σ∗, δ(q0, s) is defined},

Lm(G) = {s | s ∈ Σ∗, δ(q0, s) is defined, δ(q0, s) ∈ Qm}.

The language L(G) can be viewed as the unrestricted behavior of a DES and Lm(G)

as the sequences of events that accomplish a task, also called marked strings.

The string t is called a prefix of the string s, denoted t ≤ s, if ∃u ∈ Σ∗, s = tu.

The empty string ǫ is a prefix of all strings. The prefix-closure of a language is defined

to be the set of all prefixes of strings in the language:

L = {t | t ∈ Σ∗,∃s ∈ L, t ≤ s}

An FSA G is called non-blocking if L(G) = Lm(G). In other words, all string prefixes

it can generate eventually lead to a marked state. The non-blocking property is

important because, when it is not satisfied, the DES may get “stuck” during runtime,

i.e., reach a state from which a marked state is not reachable.

An example of a DES is the simplified model of a customer at a store [36] (Fig. 2.1).

The customer can enter the store, pick something to buy, pay with cash or a credit

card, and leave at any time. Here Σ = {“enter”, “pick”, “pay cash”, “pay cc”,

“leave”}. The set of states is Q = {q0, q1, q2, q3}. The transition function can be

determined from the diagram in Fig. 2.1, e.g., δ(q1, pick) = q2. The initial state

is q0. The set of marked states is Qm = {q0}. Examples of event sequences are

“enter, leave” or “enter, pick, pay cc”. The second sequence is not “complete”—it

does not belong to Lm(G). However, it belongs to Lm(G), since it is a prefix of the

CHAPTER 2. LITERATURE REVIEW 11

q0 q1

q3 q2

enter

leave

pick

pay cash

pay cc

leave
leave

Figure 2.1: DES model of a customer in a store.

sequence “enter, pick, pay cc, leave”, which is in Lm(G). This particular example is

very simple, but one can easily imagine the application of DESs in factory processes,

computer protocols, and other areas.

After having defined a DES, one of the questions of greatest interest is how one

would be able to influence its unrestricted behavior. In other words, what restrictions

would one use so that certain specifications on the behavior are met? The largest

body of research on DESs deals with this specific problem: the control of DESs.

The basic FSA model does not provide any means of control. Thus, Ramadge

and Wonham [67] extend it by distinguishing between controllable and uncontrollable

events. Controllable events are events which can be “disabled”, or prevented from

occurring, and “enabled”. Uncontrollable events remain enabled all the time. The

sets of all controllable and uncontrollable events are denoted Σc and Σuc, respectively.

Thus,

Σ = Σc ∪ Σuc, Σc ∩ Σuc = ∅.

A specification for the desired behavior of a DES G is given as a language K ⊆

L(G). The restriction of the complete behavior is done by disabling the controllable

CHAPTER 2. LITERATURE REVIEW 12

events when needed. This can be formalized by the construction of an FSA S =

(Σ, QS, δS, qS
0 , QS

m), such that K = L(S). Consequently, the controlled behavior of

the DES, L(S/G), can be obtained by intersecting the two languages: L(S/G) =

L(S)∩L(G). This method is called supervisory control and S is termed a supervisor.

Unfortunately, control of DESs is not such a trivial issue. Sometimes, the spec-

ification K may contain a string t such that an uncontrollable event can follow in

the system while the specification does not permit it, i.e., ∃s ∈ L(G), s = tσ, σ ∈

Σuc, tσ 6∈ K. Let us consider the example in Fig. 2.1. The only controllable events

are Σc = {“pay cash”, “pay cc”} (paying with cash or a credit card, respectively).

Imagine that the credit card reader is broken. Then, the desirable behavior from a

customer would be K = {“enter, leave”, “enter, pick, pay cash, leave”}. This specifi-

cation, however, cannot be implemented using supervisory control: the event “leave”

is uncontrollable, thus, it cannot be disabled after the string “enter, pick”. Despite

our best intentions to prevent theft from the store, the underlying system does not

have the necessary capability. This discussion leads to the following definition: a

language K is called controllable with respect to a system G if and only if

{sσ | s ∈ K,σ ∈ Σuc, sσ ∈ L(G)} ⊆ K.

Controllability of a specification language is important because only in such a case can

the required restrictions be implemented via supervisory control. In [95], the authors

show that the class of all controllable sublanguages with respect to a DES, C(K,G) =

{L | L ⊆ K,L is controllable with respect to G}, is a complete semilattice with respect

to set union and has a supremal element. The largest controllable sublanguage of K

with respect to G, sup C(K,G), can be computed in polynomial time in terms of

CHAPTER 2. LITERATURE REVIEW 13

the number of states. In the example from Fig. 2.1, sup C = ∅ since, once we let a

customer in the store, we cannot prevent theft.

In many cases, a complete system is composed of separate modules which in-

teract. This fact can be utilized when the system is modeled as a DES. Modular

control of DESs, [96], uses the operation called synchronous product (also known as

parallel composition) and denoted || to compose DES systems (modules) into super-

systems. For two systems, G1 = (Σ1, Q1, δ1, q01, Qf1) and G2 = (Σ2, Q2, δ2, q02, Qf2),

the synchronous product is defined to be the automaton G1‖G2 = (Σ1 ∪ Σ2, Q1 ×

Q2, δ, (q01, q02), Qf1 × Qf2), where the states are elements of the Cartesian product

of the sets of states of the two automata, the transition function δ is defined as

δ : (Q1 × Q2) × (Σ1 ∪ Σ2) → Q1 × Q2,

δ((q1, q2), σ) =



































(δ1(q1, σ), δ2(q2, σ)) if both δ1(q1, σ) and δ2(q2, σ) are defined,

(δ1(q1, σ), q2) if only δ1(q1, σ) is defined and σ /∈ Σ2,

(q1, δ2(q2, σ)) if only δ2(q2, σ) is defined and σ /∈ Σ1,

undefined otherwise.

In other words, the modules interact, and are synchronized, through their common

events. The parallel composition can be defined equivalently in linguistic terms.

Let i = 1, 2 and Pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i be the natural projections of strings from

the combined alphabets to Σ∗

i . Then, L(G1)‖L(G2) = P−1
1 (L(G1)) ∩ P−1

2 (L(G2)).

Modular DES design is an elegant and convenient architectural approach, however,

it has a significant drawback. In general, the state space of a supersystem may grow

exponentially with the number of modules. Thus, the computation of a supervisor

for the complete system becomes intractable even for moderately-sized real systems.

CHAPTER 2. LITERATURE REVIEW 14

One positive result, however, is that, under certain conditions, local supervisors can

be constructed for each module such that their combined use ensures the global

specification is met [96, 16].

Further information on discrete-event systems and their control can be found in

[10, 49, 94].

The main purpose of software packages for the solution of DES control problems

is to implement the algorithms necessary to check controllability of languages, to

compose modules, compute supremal controllable sublanguages, and perform other

similar operations. Usually, the user interfaces are not designed to support many

other activities. In extreme examples, such as CTCT [14], the interface consists of a

menu where different algorithms can be called. However, as discussed next, human

cognition is a very complex process. It cannot be supported efficiently with the simple

provision of computational algorithms in isolation from everything else.

2.2 Human Problem-Solving

During the last half-century, research in Cognitive Science [81] and Cognitive Psy-

chology [2] in particular has resulted in many advancements in the understanding

of the human cognitive processes. Such information can be used successfully in the

design of novel interfaces for software systems [18, 71].

The act of problem solving is essential to the cognitive function of human beings,

some claim [2]. Whether one takes such a stance or not, it cannot be denied that a

large portion of our conscious mental activity involves problem solving. Many of the

tools built by people are meant to assist in problem solving. The computer may be

viewed as the most versatile tool to assist people in this task. There are two ways

CHAPTER 2. LITERATURE REVIEW 15

the computer can be used: it may replace or aid a human solving a given problem.

In this section we will discuss previous work regarding general problem solving and

argue that for DES control problems, it may be impossible to create software which

will replace experts. Instead, better software tools can be built through a better

understanding of how people solve DES problems.

Given a problem, humans will rely on general background knowledge, problem-

related knowledge and past experiences to understand the task and make the correct

inferences. Also, people have an array of strategies that can be used to attempt to

solve a problem. These include random trial-and-error, systematic trial-and-error,

heuristics, analogy, etc. [92]. As Thagard [81] argues, analogy is one of the most

powerful problem solving strategies. Past problem-solving experiences create certain

structures which relate entities and concepts according to their roles in the solution.

In encountering a similar situation, the person would recall this structure and then

simply map the new entities and concepts onto the structure to automatically obtain

the necessary relations. In the terminology of object-oriented programming, expe-

riences are “abstracted” into “classes” of objects which are “instantiated” for new

problems. Analogical problem-solving requires very little mental effort and this is

the reason why people have a preference for it. Sometimes they might even try to

“force-map” a new problem onto the structure of an old problem even though the two

problems are incompatible. This leads to an easily-obtainable solution, however, the

solution might be sub-optimal or even incorrect. The analogy method of solving prob-

lems is related to the Einstellung phenomenon discussed later in this section. While

it may seem that there is a great risk of erring associated with the use of analogies to

solve problems, human activity as we know it would not be possible without “taking

CHAPTER 2. LITERATURE REVIEW 16

shortcuts” through analogies. Imagine, for example, what it would be like if every

door one needed to open appeared as completely unrelated (non-analogous) to other

doors one has encountered in one’s past experience. Then, one would need to spend

time and mental effort trying to figure out how to open every new door.

Unfortunately, it is not always possible to use analogies. How would one proceed

to solve a novel problem which has not been encountered yet? This depends on

the type of problem being solved. Johnson-Laird [46] differentiates between two

categories of problems: those that involve gradual advancement towards the goal and

those that involve insight to reach the solution. The first category usually involves

problems that are familiar to the problem-solver. For example, given a particular

quadratic equation, a student who knows the formula for finding the roots would

apply a familiar methodology and gradually work their way to solving the problem.

In another example, somebody who is acquainted with the general method of solving

the Tower of Hanoi puzzle [55] would be able to solve any instance of the puzzle

(with any number of disks) by systematically applying the learned rules. The second

category of problems involves problems where the solver cannot complete the solution

without gaining insight—a qualitatively different view of the problem or strategy. For

example, if a student knows only the formula for finding the area of a parallelogram

and they need to find the area of a triangle, they may solve the problem by gaining

the insight that the triangle may be viewed as half of a parallelogram.

Any problem can be seen as an insight problem if one considers each step in a

gradually advancing solution to be a small-scale insight. However, as Johnson-Laird

points out, the practical experience in the solution of an insight problem is completely

CHAPTER 2. LITERATURE REVIEW 17

different from the experience in gradual problem-solving [46]. Furthermore, he sug-

gests that following a gradual problem-solving strategy in an insight problem usually

precludes reaching a successful solution [60].

How do people gain the necessary insight to a problem? The research on this

topic has been largely inconclusive [46]. However, the outward representation of the

behavior can be described as follows [88]. First, there is the stage of preparation, that

is, when one builds a knowledge base and attempts to solve the problem using con-

sciously directed activity. If there is an impasse, when all problem-solving strategies

employed seem to no longer offer new inferences that bring one closer to the goal,

one can stop directing any conscious activity towards finding a solution. The process

enters the incubation period. The gain of insight happens suddenly, without prior

warning, and results in a qualitatively different view of the problem. This is called an

illumination. In the last stage, the person resumes conscious problem-solving activity

to verify that the new inferences will lead to the solution.

Of course, the gain of insight is not white magic in the working: one cannot solve

a problem “unconsciously” if one does not have the necessary background knowledge

or experiences needed to solve the problem. For example, it makes no sense to ask a

life-long inhabitant of the Amazon jungle to intuitively choose the better of two pairs

of snowshoes since they do not have any experience with snow and thus no rational

basis to make one choice over another. In fact, any problem solving strategy would be

unsuccessful without knowledge relevant to the problem [92]. It is important to point

out, however, that the knowledge needed to solve a problem through insight need

not be obviously related to the problem. For example, a bridge construction engineer

may be able to design the construction of a tower because of their more general

CHAPTER 2. LITERATURE REVIEW 18

expertise with, or “intuitive feel” about, the construction material (steel). On the

other hand, there are situations when a person has to make a decision without having

a sufficient amount of background knowledge. For example, managers frequently

have to make decisions without deep understanding of the matter—either because it

requires extensive studying (as in engineering problems) or because it involves a large

number of disciplines (as in the design of a spacesuit). Is there a way to enhance

the performance of “intuitive” problem-solving and increase the chances of getting

the right insight? In [65], Osborn formalized a method for “creative problem-solving”

which he calls brainstorming. It involves the participation of a group of people focused

on solving a problem. People propose ideas in turns and the following guidelines are

used:

• Criticism of ideas is suspended until the end.

• The wildest ideas are welcome.

• The more ideas proposed, the better.

• Combination and improvement of ideas is encouraged.

In essence, the method is designed to help with the reformulation of the problem in a

way that the insight necessary for the solution is reached. The only drawback of this

process is that it requires multiple participants. Thus, it is not applicable to solitary

problem solving. On the other hand, it makes a strong case for interface designs that

allow easy sharing of information and exchange of feedback.

The preceding discussions described problem-solving as a process that starts off by

considering a problem and, after some mental effort—be it conscious or unconscious—

produces a solution to the problem. Such observations can be made in settings where

CHAPTER 2. LITERATURE REVIEW 19

the problems are well defined and there are strict constraints on the solution to be

obtained. Problems handed out in the laboratory of a psychologist or problems on

a math exam in school are good examples of this kind. However, in real life people

most frequently face problems which allow much greater freedom of interpretation

and have more relaxed constraints on the solution. As described below, it has been

observed that in many activities, people formulate the problem concurrently with

solving it. In other words, the process consists of an iteration where the performance

of activities leading to the solution results in a modification of the problem. Thus,

the problem is dependent on the process of solving—and the problem solved at the

end may not bear close resemblance to the initial problem. In looking for a house to

buy [78], for example, the person may set off looking for a small house within a 5 km

radius of the downtown core of a city but, after checking the price range, settle for

a large house at the outskirts. The person may not even think about a big house in

the beginning of the search. In the context of supervisory control of DESs, there is a

similar situation that may occur. In [97], on page 43, Wood points out that in DES

systems which are tightly coupled with the control objectives,

. . . the modeling of the [system], legal specification and supervisor is a

more arbitrary process where each affects the other’s design.

This is especially pertinent to situations where the system is not yet built, or where

the system is implemented using programmable circuitry. In the latter case, there is

great freedom in designing the “unrestricted” behavior of the system, since a large

part of the behavior is actually generated by the control circuitry. As well, some

“uncontrollable” input may be ignored or the design altered so that it becomes con-

trollable. For example, in a vending machine, the uncontrollable event of a person

CHAPTER 2. LITERATURE REVIEW 20

inserting a coin can be rendered controllable by equipping the machine with a switch

that can block the path to the bank, thus flushing the coin to the coin exit. The

design of a supervisor might necessitate changes to the system which, in turn, might

necessitate changes to the control specifications and, in turn, require a redesign of

the supervisor. At the end of the process, the supervisory solution might be for a

system quite different from the original system. There are no known algorithmic rules

for making the correct redesign choices, thus, the above iterative process cannot be

automated.

The reader might at this point wonder: if people are solving vaguely defined

problems or problems that need insight, what can be expected as the outcome of

the problem-solving activity? Is it always the case that either people find the correct

solution or they recognize their inability to successfully complete the task? Surely, the

outcome may simply be a solution which is incorrect. In other words, the problem-

solver makes an error. Some common patterns of erring are discussed next.

The most famous work on human factors in problem-solving is the work of Wason

and Johnson-Laird on the so-called selection task [90]. The selection task can be

described as follows. There are four cards where each card has a number on one side

and a letter on the other. The cards are laid down on the table so that the sides

that face the subject read, for example, “E, K, 4, 7”. The subject is given the rule:

“If there is a vowel on one side, there is an even number on the other side”. Then,

the task of the subject is to choose which cards have to be flipped over to verify

the rule. Since the rule is a simple implication, according to mathematical logic one

needs to flip the card showing “E” (to verify that there is an even number on the

other side) and the card showing “7” (to verify that there is no vowel on the other

CHAPTER 2. LITERATURE REVIEW 21

side). Surprisingly, or maybe not surprisingly at all, only 4% of the subjects gave

the correct answer. The vast majority, 79%, chose either only the card with “E”

or the cards with “E” and “4”. This experiment has also been given to a class of

mathematics students and the results again show that the majority of subjects fail

to give the correct answer. On the heels of the selection task comes further research

which elaborates on the observed results [89]. It has been found that people have a

verification bias in confirming hypotheses. When there is a hypothesis to be tested,

people try to generate as many examples as possible that confirm the hypothesis, while

little effort, if any, is directed at trying to find examples that disprove the hypothesis.

In other words, given the hypothesis A → B, people will generate many examples of

B and try to see if, indeed, they are valid. However, usually no examples of ¬B will

be generated to see if they are valid (thus, disproving the hypothesis). For example,

in an experiment [89], subjects were asked to determine what rule is used to generate

the sequence of numbers “2, 4, 6” (where the rule was “a sequence of increasing

numbers”). The subjects could generate a different sequences of numbers and ask if

they can be generated by the same rule. In order to test if the rule is “add two to

the previous number”, subjects would test sequences such as “11, 13, 15” (conform

to the hypothesis) instead of sequences such as “11, 12, 13” (do not conform to the

hypothesis). Twenty three of the twenty nine subjects did not manage to discover

the rule with their first hypothesis. When testing their hypotheses, the mean ratio

of non-conforming to conforming sequences was only 0.24, i.e., subjects generally did

not attempt to disprove their hypotheses. The selection task and verification bias

have stirred much debate and much research has been done on different aspects of

the phenomenon. The theories proposed so far have not been conclusive, however,

CHAPTER 2. LITERATURE REVIEW 22

they give rise to some ideas that can be summarized as follows.

People do not use logical rules in thinking. The selection task and similar experi-

ments demonstrate quite convincingly that people generally do not employ the rules

of mathematical logic when problem-solving. This conclusion, however, still leaves

many questions unanswered. For example, Legrenzi and Legrenzi [48] have modified

the selection task in a minor (from the logical point of view) way to obtain a sig-

nificant change in the performance of subjects. The task was rephrased to involve

checking if envelopes have sufficient postage (again, involving the same simple im-

plication rule) and suddenly almost all tested subjects gave the right answer. In an

attempt to explain such performances, Cosmides [13] proposes a theory based on evo-

lution. She claims that that human mind has adapted in a way that lets people detect

cheaters—and which explains why people do not perform well on abstract tasks but

are good at tasks that involve dealing with regulations and restrictions pertaining to

real-life situations.

People build mental models when reasoning instead of using mathematical proof

systems. This thesis has been advanced by Johnson-Laird et al. [45, 47] and is based

on many observations of how people solve mathematical problems. Instead of using

mathematically sound inferences which lead to the proof or disproof of an argument,

people attempt to create a model that conforms to the argument. If they succeed,

they continue building alternative models until they exhaust all possibilities and then

they accept the argument. If at any point they fail to build a model, they reject the

argument. The mental modeling thesis is supported by numerous experiments. For

example, in Johnson-Laird et al. [47], subjects were asked to answer the following

question. There is a box in which there is a black marble, or a red marble, or both.

CHAPTER 2. LITERATURE REVIEW 23

What is the probability that, upon opening the box, one would discover a black marble

with or without another marble? The vast majority of subjects answered 67%. (In

fact, the given information is insufficient to solve the problem.) This indicates that a

mental model of having three different scenarios is built (only black marble, only red

marble, both black and red marbles). The model theory also explains other factors

in human problem-solving. For example, general knowledge has a significant impact

on human judgment. In [52], subjects were observed to reject the logically valid

argument:

Wars are prosperous.

Prosperity is desirable.

Thus, wars are desirable.

while accepting the logically invalid argument:

All communists are radicals.

All labor leaders are radicals.

Thus, all labor leaders are communists.

If mental models are created, then they employ any knowledge that the individual

might have and this knowledge may influence the problem-solving activity. An argu-

ment against the model theory is that, in some cases, it is impossible to exhaustively

build all model variants either due to the nature of the problem or due to the large

number of possibilities. Then, the theory predicts that people would get “stuck” cre-

ating models forever. The answer can be found in [77], where the authors argue that

people use bounded rationality, a phenomenon termed satisficing. In other words,

they continue building models until they feel they are confident enough in the answer

CHAPTER 2. LITERATURE REVIEW 24

(the solution is “good enough”). Since for different problems different people have

different motivation, the performance of subjects may widely vary depending on the

point at which they subjectively evaluate the solution as “good enough”.

How does the above discussion relate to the solving of DES problems? In our

opinion, the major implication it has for the field is that researchers, while acquainted

in detail with the mathematical theories behind control of DESs, most likely continue

to build approximate models of the systems in their minds and their thinking is colored

by any real-life knowledge they may have. In the observational study described in

[32], we noticed that subjects usually started modeling the buffer in a factory system

as a separate module of the system. This is consistent with the real-life notion of

a buffer as a separate entity in a factory. However, theoretically, the prevention of

overflow of a buffer is only a constraint (or a specification) that has to be met by the

supervisor that controls the machines in the factory. Subjects were well aware of the

fact that a buffer should be a part of the specifications through previous examples in

their research career.

Another factor in human problem-solving was explored in a study by Luchins and

Luchins [56]. In an experiment, subjects were asked to solve a series of simple “water

jar” problems. These are problems where a set of hypothetical jars with certain

volumes are given and the subject is asked to measure a precise amount of water by

filling and emptying the jars as needed. In the particular series of problems given to

the subjects, the solutions of the first few problems are the same (i.e., require the

same sequence of pourings of water). Then, for the last couple of problems the same

solution is not optimal or an altogether different sequence is required. The subjects

consistently failed to see the optimal solutions for the last problems and in general

CHAPTER 2. LITERATURE REVIEW 25

had trouble solving them when they were preceded by the series of initial problems.

Subjects did not experience these difficulties if the last problems were given first.

This interference effect was termed Einstellung or the mechanization of thought. In

other words, if one encounters the same solution a number of times, one has difficulty

seeing alternatives.

We believe that, unfortunately, almost any field of research suffers from a form

of the above phenomenon. Once a researcher becomes an expert in their area of

research, they tend to see everything as an instance of an issue in their field of

expertise. The same holds for research in the field of DES control. For example, we

have observed that researchers trained in the modeling using FSAs tend to consider

their approach “superior”, or at least more convenient, than an alternative approach

using Petri nets. The converse is true for researchers trained in the use of Petri nets.

However, it is likely that the most successful solutions will be the ones that take

advantage of the results of a larger body of research rather than staying within the

cast of the specific modeling paradigm. Brainstorming is a suitable tool to address

this issue, since different researchers can bring different backgrounds to the table and

the environment is conducive for an exchange of ideas. From our personal experience,

a similar setting led to the rapid generation of the ideas discussed in [19].

As a conclusion to problem solving the following can be noted. The human cogni-

tive processes involved in problem solving are not yet completely understood. Much

of the research should be viewed only as propositions that offer only tentative expla-

nations. There are a number of biases and other factors, such as prior knowledge,

that influence the human performance in problem solving. People may decide to use

short-cuts such as solution by analogy. Furthermore, problem solving is bounded by

CHAPTER 2. LITERATURE REVIEW 26

satisficing, i.e., reaching “good enough” solutions. The general activity of problem

solving is not necessarily a straightforward process which starts with a well-defined

problem and proceeds systematically towards the solution. Many times people use

the process of solving to actually define the problem. All of the above apply also

to problem solving in the area of DES control. As pointed out in places throughout

this section, it is not possible to completely automate DES problem solving due to

a variety of reasons. The iterative process of adjusting specifications and verifying

the resulting model is not yet understood. The act of creating initial models for a

DES is also not covered in current DES research and this activity is left entirely to

the “designer’s intuition” [72]. Current software designed for DES researchers focuses

exclusively on providing computational support for the generation of a solution (i.e.,

in generating supervisors). This alleviates a great chunk of the activities necessary

to solve a DES control problem. However, there are other stages involved in DES

problem solving: modeling the system, verifying the proposed solutions, modifying

different constraints, etc. If software is to be designed to assist in problem solving,

the human cognitive processes have to be understood and taken into consideration so

that they can be augmented effectively.

2.3 User Interfaces

As was explored in the previous section, there are many factor that may determine

the suitability of a particular machine interface for use by humans. Unfortunately,

there are no detailed rules a designer can follow to deterministically obtain a better or

worse interface. There are, however, ideas that are helpful during the design process.

Some of them are discussed next.

CHAPTER 2. LITERATURE REVIEW 27

In [83] and [64], the authors make an important point: the designer and the user

of a tool typically are not one and the same person. It is crucial that the designer

keeps in mind the fact that what seems to be the best solution to him or her may

not be the best solution to the end user(s). One type of difference is in the general

attitude or personality. A brief study done by Tognazzini [83] at a software company

shows that, according to the Myers Briggs type indicator [62], software engineers are

predominantly of the “intuitive” type. In other words, they are able to easily build

abstract models of non-visible but well-defined interfaces (such as the command line),

and prefer such interfaces if they provide greater flexibility and control. On the other

hand, previous research shows that in the general population, the “sensory” type is

predominant [62]. In other words, most people prefer to work with highly visible

interfaces that allow direct manipulation of objects. Thus, interfaces for the general

public have to be built using a different paradigm than what the software developers

feel is most intuitive. The same information, however, points to the fact that in the

context of DES control problem-solving, the users are expected to be predominantly

of the intuitive type.

Even when the interface designer chooses the appropriate interface paradigm,

there are many variations of the design that may improve or hinder the success of the

product. The usability of a product is the actual performance that can be achieved

by the user. This is different from functionality since some of the functionality may

be unusable due to problematic design. As a classic example, most VCR models have

a clock but the vast majority of VCR owners do not use it since the procedure to set

it is too complex. In classical books on usability, e.g. [64], and newer books geared

toward software interfaces, e.g. [18], the authors point out that there are no particular

CHAPTER 2. LITERATURE REVIEW 28

methodologies of design that guarantee that the product will be successful in terms

of usability. The two (complementary) approaches recommended are

• follow general guidelines for successful design and

• perform user testing.

Some of the general guidelines for usable design are summarized in [18, 64, 83]:

• The design should be learnable. The designer has to choose a paradigm, a

guiding concept, and use it to create a consistent design. The design has to

be predictable so that the user can come up with a reliable mental model of

the product. Instrumental in this is also taking advantage of any previous

knowledge the user might have so that fewer operations or relationships have to

be learned. For example, if there is a vertical slider to control the temperature

setting of a thermostat, it is desirable to design it so that “cool” is at the bottom

and “warm” is at the top. This would be consistent with another common tool,

the mercury thermometer, which traditionally has this design.

• The interface should be flexible. As already noted in previous sections, everyone

has a different “cognitive approach”. While good designs work well for most

users, customization might improve usability for each individual user. This is es-

pecially relevant to software interfaces since customizable designs are relatively

easier to implement for computers than for other tools.

• The interface should be robust. It is human to make mistakes; as Norman puts

it in [64],

If an error is possible, someone will make it.

CHAPTER 2. LITERATURE REVIEW 29

Unfortunately, not all designs are created with the above maxim in mind. The

design has to be simple, and the state of the system and the available actions

need to be visible to the user. The performance of operations needs to be

prompt. Adequate feedback has to be provided. The user needs to be able to

discriminate between desirable and undesirable states. All of the above will help

in minimizing the probability of an error occurring. Nevertheless, errors may

eventually occur. Thus, the design should afford corrective actions whenever

possible. In computer interfaces, the “undo” command is essential.

Unfortunately, the above guidelines offer no guarantee that the resulting product

will be usable—to the intended users. It is very hard, if not impossible, to escape

any subjective judgment when a product is being designed. The simple solution,

points out Tognazzini [83], is to perform user testing. In an anecdotal recollection,

the author describes how the design team for a piece of software needed to rephrase

six times a simple question in the interface before they started getting consistently

correct responses from the users. Such issues can be discovered only during user

testing since the designers are well aware of their own design and thus will not run

into confusion. Furthermore, the designers must witness the user testing:

. . . People must see their users in action. . . Any attempt. . . to verbalize

the results of testing will automatically filter away intuitive information

important to design team members. [83]

Another reason for the importance of user testing is the fact that when a new product

is developed, the process is gradual and spreads over a long period of time. The

developers and designers have time to accommodate to any new aspect of the design.

CHAPTER 2. LITERATURE REVIEW 30

However, the end users are faced with the complete product all at once. They may

not be prepared to handle all aspects in the way the more experienced developers do.

The user interface design principles are derived from practice and common sense

more than from rigorous research. However, they form a good complement to the

results from (cognitive) psychology research (e.g., from Section 2.2) when developing

a product to be used by humans, such as a system that will assist in the solution of

DES control problems.

Chapter 3

Recommendations for

Improvement of DES Software

The improvements of DES software proposed in this chapter and the development

of the template design methodology described in Chapter 4 were motivated greatly

by our investigation of how people solve DES problems. The complete report of our

investigation of DES problem solving, which included an observational study, can be

found in [32]. Here we will provide a brief overview of the study and summarize some

of the observations which motivated our work. Then we will present a list of specific

changes which were recommended for implementation in the IDES software package

[73] and discuss the implementation of a subset of these changes.

31

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 32

3.1 Motivation

3.1.1 Study of DES problem solving

As a precursor to the work in this dissertation, we conducted an exploratory observa-

tional study to acquire a deeper insight into how people familiar with DES supervisory

theory solve DES problems [32]. The study was set up so that we could observe and

record the performance of subjects.

We recruited five subjects in total. Each subject had at least one university

semester of exposure to supervisory control theory for DESs. Each subject was ad-

ministered two problems in the field of DES control. One of the problems is an

adaptation of a classic problem in the field, the “Transfer Line” [94]. The problem

asks for the design of a controller for a system of factory machines and buffers between

them. Each subject had seen this problem being solved in a university course. We will

refer to this problem as the “factory problem”. The second problem, the “hospital

problem”, was modelled after the first one, however, the statement of the problem

was modified significantly, so as to hide its similarity. Instead of considering machines

and buffers, the problem talks about a patient in a hospital and certain requirements

are set on the intake of medication and on the processing of medical reports. The

problems themselves imposed no specific methodology for problem solving. Subjects

were instructed to produce a DES supervisory solution and no particular approach

(e.g., monolithic or modular [96]) was recommended. Furthermore, subjects were

provided with a pen, sufficient amount of paper, and a computer running version 2

of the IDES software developed at Karen Rudie’s research laboratory at the Depart-

ment of Electrical and Computer Engineering, Queen’s University, Canada [43]. The

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 33

subjects were free to use any tool in any fashion they desired and to switch between

tools (i.e., between pen and paper and the computer) whenever they wished and as

many times as desired.

The subjects in the study were asked to think aloud while solving the problems in

order to collect data for a subsequent protocol analysis (as per the recommendations

in [22]). In order to allow for more complete data analysis from this study, the per-

formance of each subject was, consensually, video-taped. The video record (including

the audio track), as well as all paper records and computer files produced by the

subjects, were retained for analysis.

In addition to conducting observational sessions with subjects, two experts were

interviewed about the strategies they use to solve DES control problems. Both inter-

viewees are Control Engineers and have been working in the field of DES education

for many years.

3.1.2 Discussion

Unconstrained design

We believe that the design activity when solving a DES problem should not be re-

stricted to a prescribed order or constrained by requirements for model consistency.

This belief is substantiated not only by the findings of other authors; e.g., in [97]

Wood explains that the process of modelling a DES solution may be arbitrary due to

mutual influence of the components of the solution. Our direct observations during

the study of problem solving provide many examples of the diversity of the process,

even with a small number of subjects. The participants in the observational study

used varying approaches in solving the given problems. We noticed a variety not only

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 34

at the low level (e.g., in the way subjects draw models), but also at the high level of

problem-solving strategies. Of the five subjects, only one used the approach recom-

mended by experts, when solving the problem the subject was acquainted with (the

factory problem). When solving a novel problem (the hospital problem) subjects in

general used different strategies as, in our opinion, the prescribed strategy is not suit-

able for working with ill-structured problems where it is not immediately clear what

the sub-components of the problem are and how these sub-components interact. One

of the subjects created numerous versions of their models while experimenting with

the interaction between them—most of the time working with formally inconsistent

models. Conversely, another subject preferred to “get it right” in the first try, by

studying the problem description longer and by constructing their models slowly and

carefully. However, at the end of the session, both subjects had advanced comparably.

In this sense, we feel that no specific approach can be identified as advantageous.

Most subjects attempted to construct supervisory solutions manually, even though

they had access to software which can synthesize supervisors that are correct and op-

timal. According to us, there are two likely reasons for choosing to work manually.

First, manual construction does not require formal models of the control specifica-

tions; these are required if the algorithm is to be used. Second, the verification of

the correctness of the manually constructed supervisor is simpler since the subjects

participate in its construction (as opposed to receiving an automatically synthesized

model). The drawback to the manual construction is that, in the general case, it

is hard to find the optimal supervisory solution. Indeed, during modelling, subjects

frequently verified the correctness of their solution, however, they almost never exam-

ined the optimality, i.e., if the supervisor is as permissive as possible. Psychologically,

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 35

this can be explained with the reluctance of humans to explore reverse implications

(required to check optimality), as noted by Wason and Johnson-Laird in [90]. We

think that, overall, the use of the algorithm for automatic synthesis of supervisory

solutions should be strongly encouraged, however, DES software should not prevent

the use of manually constructed supervisors. In some cases, such supervisors may be

preferred by the users of the software. Especially in industry, as interviewed DES

experts remark, there is more interest in the verification of manual solutions and less

in the synthesis of solutions.

Modularity and hierarchy

In our opinion, DES problem solving is essentially modular. Research so far has

focused on the theoretical foundations of modular DESs for the purpose of reducing

the computational complexity. However, it can be argued that for the same purpose

people prefer solving DES problems in a modular way. That is, relatively independent

components are identified and modelled separately. In the study on problem solving,

we observed that all subjects used this approach, including the subject with the

least sound overall strategy. On one occasion, one of the subjects started modelling

the factory problem as a single monolithic solution, however, they soon decided to

remodel everything in a modular way to handle the growing complexity.

The modular approach to problem solving results in a number of separate com-

ponents, each one much simpler and better understood compared to a monolithic

solution. However, these components are not entirely independent and the separate

models do not necessarily make the patterns of interaction between the components

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 36

obvious. It seems that a separate model is needed in order to explain these inter-

actions. Indeed, in the study we observed that subjects created high-level diagrams

to better understand the relationships between components, especially in the (more

difficult) hospital problem. See Fig. 3.1 for examples of the diagrams. These separate

diagrams seem to serve as an overview of the complete solution. In a sense, a hier-

archical model is created where the individual modular components serve as the low

level of the high-level diagram. While the subjects in the study used the diagrams

only to help themselves in clarifying the solution requirements, we see no reason why

such diagrams cannot be used in a formal way. The use of high-level conceptual

modelling is one of the main ingredients of the methodology proposed in Chapter 4.

Automation and replication

Discrete-event systems are, inherently, unforgiving to errors. There is no graceful

degradation of performance with faulty models; even a simple mistake can render

the whole solution incorrect. This was observed on a number of occasions during

the study of DES problem solving. Notably, in one case the incorrect choice of the

controllability of a single event reduced the solution to the hospital problem to an

(incorrect) triviality. Due to the complexity of DES systems, it may be hard, if at all

possible, to spot the presence of an error. In the observational study, it was rare that

subjects recognized they had made a mistake. Thus, it is essential that DES software

reduces the opportunities for making errors during modelling.

According to us, based on the observations from the study of problem solving,

there is the need for greater automation of the mundane and error-prone modelling of

synchronization between DES modules. The synchronization of modules via common

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 37

Figure 3.1: Reproductions of some of the diagrams created by subjects when solving
the hospital problem.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 38

events proved to be one of the most challenging tasks. First, in order to synchronize

two modules, the common events have to be named in exactly the same way. Setting

aside the possibility of spelling errors, it is cognitively demanding to keep track of all

the events in a big system. Furthermore, it may be necessary to introduce artificial

modifications to event names in order to avoid synchronization where it is not de-

sired. For example, if the models of two robots have a “start” event, it is necessary to

name the events for example “start1” and “start2” to avoid the synchronous start of

the robots. In the observational study, some subjects had difficulty remembering the

exact labels for all events in the system and frequently had to refer to the events in

different parts of the model. Second, according to the framework for supervisory con-

trol proposed by Ramadge and Wonham (described for example in [94]), the models

of specifications need to list explicitly for each state the events enabled at that state.

In practice, this frequently leads to the proliferation of self-looped events at all states.

Not only do models become cumbersome and hard to read but also there are plenty

of additional opportunities to make errors when modelling, such as events omitted in

the self-loops or incorrectly self-looped events. In the observational study, subjects

often decided against modelling the specifications (and manually constructing the

supervisors instead) or, if they were modelling the specifications, they created infor-

mal models where the self-loops were not specified. The self-looping of events need

not present a difficulty, however. It can be completely automated by software, and

performed only at the time of need, i.e., before the computation of the supervisory

solution. The synchronization of events can also be simplified if a mapping between

events is used instead of direct name equivalence. In such a case, the events in differ-

ent modules will be independent (even if they share the same name). Synchronization

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 39

will be achieved via a separate structure, a mapping between the synchronized events.

We believe this will lead to clearer models, reduce the likelihood of chance synchro-

nization, and, most importantly, allow the easy substitution and reuse of models by

keeping the event names independent across components.

Finally, the opportunities for making errors can be greatly reduced if there is no

need to create models. Of course, it is not possible to avoid modelling completely,

however, in practice, often the same or similar models are used for different compo-

nents of a modular design. For example, on a factory floor there can be independent

workstations that take in parts for processing and output the parts when the process-

ing is finished. If the workstations operate independently, it is not necessary to know

what specific actions they perform. For the purposes of flow control of parts, the

model for each workstation can be the same, a simple alternation of “start” and “fin-

ish” events. In our experience, the majority of published DES problems contain parts

which are modelled in a similar way, i.e., their models are equivalent or contain minor

modifications. In the study of problem solving this was also observed, especially in

the factory problem. Since the structure of different components might be the same,

it should not be necessary to re-create the same models over and over. Instead, a

mechanism for copying should be available to replicate desired models, even across

projects. This observation serves as the motivation for the second main ingredient of

the methodology proposed in Chapter 4, the availability of model templates.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 40

3.2 Recommendations for IDES

In this section, we summarize a list of recommendations for changes or new features to

be introduced in the next generation of IDES. The list not only includes recommenda-

tions inspired directly from the study on problem solving, but also recommendations

inspired by conversations with experts and DES students, and by observations dur-

ing the work on Template Design at the Department for Automation and Systems,

Federal University of Santa Catarina, Brazil [31].

For each recommendation, we specify which part of DES problem solving will

benefit most. We consider the following categories, based on the problem-solving

taxonomy discussed in [35, 32] and on understanding of general problem solving:

Understand Support for gaining understanding of the problem and the existing

situation.

Model Support for the creation of a representation of the problem solver’s under-

standing of the problem and for the proposal of a solution.

Granularity Support for the use of representations at different levels of ab-

straction.

Analogy Support for the use of analogy in problem solving.

Robustness Support for the creation of robust solutions.

Speed Support for faster problem solving.

Other Other modelling support.

Verify Support for the verification that the solution is correct.

Visualization Support for the visualization of the solution.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 41

Other Other verification support.

In addition to the above general categories, we introduce a new one, geared specifically

to the implementation in software:

Usability Support for a functional, efficient, effective and pleasant process of prob-

lem solving while using the software.

In Table 3.1, the specific recommendations are listed. More detailed descriptions

of the recommendations follow next.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 42

U
n
d
er

st
an

d

Model Verify

U
sa

b
il
it
y

Recommendation G
ra

n
u
la

ri
ty

A
n
al

og
y

R
ob

u
st

n
es

s

S
p
ee

d

O
th

er

V
is

u
al

iz
e

O
th

er

Online access to problem description • •

DES theory reference • • • •

Conceptual design • • • •

Templates • • • •

Model/environment interaction •

Copy models • • •

Copy events • • •

Display event lists • •

Event annotation • •

Model annotation • •

Wizards • • • •

Organize models in groups • •

History of models (checkpoints) • •

Derivation of models (auto-update) • • •

History of commands/actions • •

Text entry of commands (command line) •

Command scripts • • •

Unbounded inputs for algorithms •

Deterministic layout • • •

Multiple layout algorithms •

State-browsing for large models • •

Implicit/explicit display of control decisions • •

Event sequence tracing •

Simulation •

Verification of manually created supervisors •

Auto-check for initial/marked states •

Auto-check for controllability of supervisors • •

Split/merge supervisors • • •

Implicit specifications • • • •

Specifications as inequalities • •

Glance at models • • • •

Import/export to common formats • •

PLC export •

Table 3.1: Recommendations for changes or new features in IDES.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 43

Online access to problem description A feature which will provide quick ac-

cess to the (informal) description of the problem from within the software. This is

especially important when the description is available only in electronic form. This

recommendation is similar to the recommendation in [38] to provide access to domain

knowledge throughout the design process.

DES theory reference The inclusion of a reference for DES theory with the soft-

ware package. This document should include the main theoretical results, as well as

descriptions of the available DES algorithms and a guide about their usage.

Conceptual design The software should support the creation of conceptual designs

of the control solution, such as the display of a high-level abstraction of the design ele-

ments. This feature will help users attain an overview of their solution which may not

be possible otherwise, e.g., when many low-level components are used. Conceptual

designs may offer a big advantage over paper diagrams. Depending on their imple-

mentation, such designs can be updated automatically to reflect the current low-level

designs. Furthermore, conceptual designs may allow for faster updates of the model

and thus increase the flexibility of designers to explore different design variations.

This recommendation is partially related to the recommendation in [38] to allow the

exploration of alternative solutions.

Templates A repository of common DES modules which can be “instantiated”

(duplicated) when needed. This is especially valuable when the design of controllers

for similar systems is done, or when a system consists of a number of identical com-

ponents (e.g., an assembly line populated with identical robots). The availability of

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 44

reusable templates will result in a reduction of the errors made during DES design as

each template can be verified before inclusion in the repository. Duplicates then will

have the same degree of correctness as the original template. This recommendation

is similar to the recommendation in [38] to provide a library of design schemata or

pieces of expert advice.

Model/environment interaction Support for the modelling of the interaction

between the system and the environment. In all classical DES system models, this is

already done implicitly with the assumption that the environmental forces regulate

the occurrence of events, i.e., the occurrences of events are spontaneous. However,

sometimes it may be useful to distinguish between causal forces internal to the system

(e.g., what causes a workstation to finish processing a part after it has started pro-

cessing it) and causal forces external to the system (e.g., what causes the demand for

an additional batch of parts to be produced). The ability to model such “external”

interactions explicitly will help in identifying the inputs and outputs of a system and

allow for a more “natural” way of modelling.

Copy models Support for the duplication of DES models. This could take the

form of a copy/paste operation.

Copy events Support for the duplication of events across models. This could take

the form of a copy/paste operation. The duplication of events is especially important

when different modules need to be synchronized via events. Exact copies of events

are needed in such cases, and manual copying is prone to errors.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 45

Display event lists The display of an aggregation of all events in a project, across

all models. The ability to see all events can help in the recognition of undesired event

synchronization, or of incorrect event naming. Furthermore, combined with an event

duplication facility, it will be possible to duplicate events from different modules at

once. This is useful in the modelling of control specifications as specifications may

need to be synchronized with a number of modules.

Event annotation Support for the annotation of events. This will not only help

with the sharing of information when models are exchanged between different parties.

When it is necessary to use short (or coded) event names, it will be possible to

annotate events with a full description.

Model annotation Support for the annotation of models. Annotations can be used

to store remarks about a model for use at a later time, or to help share information

when models are exchanged between different parties.

Wizards A feature which will guide users in solving typical DES control problems,

similar to the wizards available in other software. In DES, most problems vary in

terms of the specifics of the model, however, the structure of the solution—the se-

quence of operations applied—remains the same. Thus, wizards for typical problem

structures can be designed, where the user will only need to specify which models

have to be used to compute a control solution.

Organize models in groups Support for the custom grouping of models. Some

DES software, including IDES, allows the simultaneous work on a number of models

(e.g., through a “project”). However, the user should be able to organize the models

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 46

in a project into smaller subgroups according to their mental model of the system.

Some users may wish to group system modules and control specifications separately,

while others may prefer to form groups according to the relevant subsystems. Support

for custom grouping need not be complex. It may be as simple as support for custom

ordering of the loaded models.

History of models (checkpoints) The software should maintain the history of

changes in each model, e.g., through checkpoints. It should be easy to browse the

records. For example, each model may have an associated time-line which allows the

user to view a given model at a selected interval in the past. Being able to view a

previous version of a model may help in problem solving, e.g., by supporting compar-

ative statics [80]. Subjects in the observational study frequently referred to previous

versions. The model history may simultaneously serve as an undo/redo mechanism.

An advanced version of the same facility may be implemented to maintain a history of

the whole workspace/project—to allow for review of past work, synchronized among

all models, and to offer access to models which may have been deleted.

Derivation of models (auto-update) For models which have not been designed

manually, the software should keep track of how they have been computed, i.e., which

algorithm was used and which were the source models. This information should be

available to the user as a reminder. Furthermore, the software may use the informa-

tion to update (recompute) models automatically when the source models change.

Such updates can be carried out recursively when the user makes a change, starting

with the models which depend on the manually designed models.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 47

History of commands/actions The software should maintain a record of the

history of all commands or DES operations the user has invoked. This history can be

used by users as a reminder or as a repository which can be examined post factum for

problem solving strategies. The history can be integrated with other facilities such as

the auto-update feature for computed models or the creation of command scripts. In

some sense, this recommendation will provide some of the support recommended in

[38] to document design decisions in the transition from informal to formal models.

Text entry of commands (command line) Support for the entry of text com-

mands, e.g., a command line, within the software. The users will be able to type the

names of the algorithms they want to invoke and specify their parameters. In some

cases this may be faster than using the graphical interface, particularly for expert

users. This feature will be especially useful for the automation of activities, or for

sharing problem-solving know-how between parties. If nesting of commands is sup-

ported, there may be further gains in the user productivity as it will not be necessary

to deal with intermediate models.

Command scripts The facility to allow repeated invocation of a selected sequence

of commands/operations, i.e., a script. In conjunction with the text entry of com-

mands, this will offer a tool for the easy encapsulation and reuse of problem-solving

know-how. Parametrized scripts will make such know-how simple to apply in a vari-

ety of situations. Scripts may serve additionally as a mechanism for the creation of

custom wizards.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 48

Unbounded inputs for algorithms Support for the selection of an unbounded

number of inputs to relevant (commutative and associative) operations. Examples

of operations which can be extended to support an unbounded number of inputs are

intersection and parallel composition. The speed of problem solving will increase as

the user will no longer have to create intermediate models in order to apply such

operations to more than two inputs.

Deterministic layout Implementation of an algorithm for the deterministic lay-

out of finite-state automata (FSAs). Such an algorithm will produce identical layouts

for identical FSAs. This will provide an important advantage in verifying DES solu-

tions, specifically by facilitating the recognition of (dis)similarity between software-

generated FSAs. By extension, a built-in minimization of FSAs before layout will

allow the comparison of the behavior represented by such automata—as all automata

will be laid out in their canonical form. It is important to remember, however, that

minimization should be optional. In certain situations, when solving DES problems,

the structure of an FSA may provide the problem solvers with more clues than the

minimized version of the same FSA.

Multiple layout algorithms Implementation of a number of different layout al-

gorithms for FSAs. Different layout algorithms may emphasize visually different

features of an FSA structure. Thus, users will have a wider selection of tools to help

them make sense of software-generated models.

State-browsing for large models A facility to examine the structure of very large

FSA models where a graphical visualization is impractical or infeasible. A standard

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 49

approach involves the listing of all states and transitions of a model in a table. State

browsing is an extension of this idea, where the user is able to select transitions leading

into, or out of, states to explore the states these transitions come from, or lead to,

respectively. In essence, this interaction style is similar to browsing web pages with

links.

Implicit/explicit display of control decisions Support for the display of con-

trol decisions in supervisors (i.e., the enablement or disablement of events) in either

implicit or explicit form. The implicit form is when, at each state of the supervisor,

the events on the transitions that lead out of the state give the set of all enabled

events at this state. This is the visualization supported by most DES software; it

does not require any features beyond the ability to display FSAs. The explicit form

is when each state of the supervisor is augmented with a list of all events which are

disabled at the state. The user should be able to switch between the two modes of

display.

Event sequence tracing A facility enabling the tracing of event sequences in a

model. It should be able to answer questions such as “Does a given event sequence

belong to the language generated by the model?” or “Starting at state q, is it possible

to generate the given event sequence?” Further improvements include highlighting

in the graphical model the states and transitions through which an event sequence

passes.

Simulation A feature which allows the simulation of the performance of a (possibly

controlled) DES system, similar to what existing methods of discrete-event simulation

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 50

offer [3]. This should include both an event generator module where events to drive the

simulation are generated and an analysis module where the performance of the system

is analysed—e.g., number of occurrences of a given event, proportion of occurrences of

a given substring, number of times a state was reached, etc. The feature should allow

repeated simulation, as well as provide a way to specify conditions for the termination

of a simulation run. This recommendation is similar to the recommendation in [38]

to allow simulation of complex solutions.

Verification of manually created supervisors The software should provide

comprehensive support for the verification of manually created supervisors. This

should include automatic checks such as language containment, controllability or

checking if a number of supervisors are conflicting. However, checks for trivial errors

should be included as well, such as checking if the event sets of the supervisors and

the controlled systems are equal (e.g., to uncover typos).

Auto-check for initial/marked states A feature which will verify the correctness

of FSA models online, i.e., while the user designs the model. The absence of initial

and marked states is a very common error in modelling and is very easy to diagnose.

The indication of such an error should be very judicious so as not to interfere with

the design process. For example, there can be a flag in the interface which will be

raised until the user creates initial and marked states. Alternatively, the correctness

of models can be checked just before they are used in DES operations. This recom-

mendation is similar to the recommendation in [38] to perform automatic heuristic

evaluation of models during the process of problem solving, in order to provide the

user with helpful hints.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 51

Auto-check for controllability of supervisors A feature where the controllabil-

ity of computed or manually created supervisors will be checked automatically. It is

a feature which will automate the most commonly applied test during the verification

of supervisory solutions.

Split/merge supervisors A facility to allow the segregation or aggregation of

control responsibilities between supervisors as needed. The splitting of supervisors

into separate modular supervisors will support problem solving strategies which rely

on the breaking down of hard problems. The merging of selected supervisors will

speed up the problem solving process when modular supervisors are in conflict ; such

conflicts can be resolved by combining the conflicting supervisors into a monolithic

supervisor. The implementation of supervisor merging is trivial, as it is only necessary

to intersect the control strategies of the supervisors. More research needs to be done

on how it makes sense to split supervisors. Such an operation will in all likelihood

require intervention from the users.

Implicit specifications The software should support the use of implicit control

specifications alongside with explicit specifications (see [32] for more details). mplicit

specifications are specifications where the events irrelevant to the given specification

can be omitted (instead of having to be “self-looped” in each state). Such specifica-

tions are easier to read by humans; however, they require the explicit definition of

all events which participate in the model. Implicit and explicit specifications have

equivalent expressive power and it is easy to compute one from the other. Thus, the

software should allow the users to switch between the two views as needed.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 52

Specifications as inequalities Support for the entry of control specifications in

the form of inequalities, rather than FSA models. Many specifications are much more

convenient to express as inequalities in terms of the count of events or substrings. For

example, one may have a specification which says that there should not be more than

ten cars simultaneously on a section of a bridge. Such a feature will require the

implementation of a facility for the conversion of inequalities into FSAs. This, in

itself, will necessitate that a number of restrictions be placed on the form of the

inequalities—otherwise such a conversion will be infeasible.

Glance at models A feature of the software interface where the user will be able

to examine loaded models without fully activating them for editing. This could be

implemented as a response to a hover of the mouse cursor over a non-active model

name or icon.

Import/export to common formats The software should support the import

from and export to common file formats. This will enable the interoperability of the

software and allow easier exchange of models between parties. Furthermore, it will

enhance the appeal of the product since users will be able to use seamlessly other

software for operations and features which are missing from this product.

PLC export A facility to export abstract supervisory control decisions into Pro-

grammable Logic Controller (PLC) code. There are international standards for PLC

code, thus such code will be usable for a wide variety of PLCs. Research has been

done on how to implement such a facility and shows that it is indeed feasible [17, 4, 1].

Table 3.1 shows which aspects of problem solving will be positively affected by the

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 53

implementation of the listed recommendations. However, it is important to consider

that some of these recommendations may also have a negative impact on problem

solving. Notably, the automation of modelling or supervisor generation may result

in models and solutions which are non-transparent and not well understood by the

problem solvers. Recommendations which fall in this category include: templates,

wizards, automatic updating of models and command scripts. All of the above take

control away from the problem solver—which in cases may lead to confusing or un-

expected results during problem solving.

3.3 Implementation

The work on the most recent major revision of IDES, version 3, focused on two major

aspects: implementation of the infrastructure necessary for the development of plugins

(i.e., the API), and the development of a plugin for conceptual and template design

of DESs. The theory behind template design and the specifics of its implementation

are discussed in the following two chapters. Here it is worth noting that the template

design methodology encompasses or supersedes some of the recommendations listed

in Table 3.1. Template design is described in Chapter 4.

The recommendations which fall outside the scope of the template design method-

ology did not have a high priority in the development process. Thus, only a small

subset was implemented. The rest of the recommendations will be included in future

releases gradually, when project resources allow.

Model annotation The annotation of models was implemented in a way which

not only supports the custom annotation of models by the user, but also introduces

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 54

some aspects of the recommendation for information on the derivation of models.

There is a text-entry area associated with each model loaded in IDES. The users

can type arbitrary text to annotate the given model. Models which are generated by

the invocation of a DES operation are automatically annotated with the description

of the operation and its input arguments. For example, the result of the product

operation invoked for the models “Robot1” and “Robot2” will be annotated with

“product(Robot1,Robot2): Composed automata”. This automatic annotations will

carry over information about how a given model was computed and users can refer to

it if they forget or get confused about the history of a model. Furthermore, automatic

annotations can be removed or replaced if the user so desires.

Unbounded inputs for algorithms The interface for the invocation of DES oper-

ations was extended to support an unbounded number of inputs for operations which

support it. First, the relevant operations were identified. These include intersection

(or product) of FSAs, synchronous product (or parallel composition) of FSAs, local

modularity check for FSAs, and multi-agent product of FSAs. All of these operations

are commutative and associative, with the exception of local modularity and multi-

agent product which cannot be performed incrementally, i.e., they are not associative.

The implementation of the operations was modified to allow an unbounded number

of inputs (a list of inputs whose size is determined at runtime). Furthermore, these

operations now include a flag which announces that unbounded inputs are accepted.

The interface was then modified to display, upon the choice of such an operation, a

list with all compatible inputs (i.e., FSAs) available in the workspace. The user is

then able to make selection of as many of these inputs as desired. The new interface

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 55

Figure 3.2: The user interface in IDES 3 for the selection of an unbounded number
of inputs for operations which support it. In this case, three inputs are selected for
the synchronous product operation.

is shown in Fig. 3.2. With this change, users no longer need to perform such op-

erations incrementally, e.g., by performing intersection three times to intersect four

FSAs. Furthermore, in the case of local modularity and multi-agent product, it is now

possible to perform the operations on more than two inputs.

Auto-check for initial/marked states The automatic checking of model cor-

rectness was partially implemented. More specifically, the infrastructure for such

auto-checking was built. Subroutines in the software now have access to a “notice

board” where messages may be posted and removed as needed. The notice board

occupies a part of the main interface (as shown in Fig. 3.3), however, the user may

choose to use this space for the display of other relevant information. The posting

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 56

Figure 3.3: The tab with notices.

of new messages is announced through a small pop-up window which does not inter-

fere with the main activity of the user (as shown in Fig. 3.4). The pop-up window

disappears automatically after a preset period. As well, clicking on the pop-up win-

dow brings the notice board to the foreground to allow the inspection of the new

messages. This approach to notifying users seems to be unobtrusive during the use

of IDES. However, further research needs to be done on whether it will be effective

for auto-check messages. A similar notice board is used by the Temlate Design plu-

gin discussed in Section 5.3.2 to display any consistency issues with template design

models.

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 57

Figure 3.4: The pop-up window in the lower-right corner of the main window, noti-
fying of new notices.

Import/export to common formats The IO module of IDES was redesigned to

allow the introduction of plugins for the import and export of custom file formats.

All internal import and export filters were re-implemented as (built-in) plugins. With

the newly introduced filters, IDES is capable of importing models from the TCT and

Grail+ software packages, and of exporting to the TCT, Grail+, LaTeX, EPS, JPEG

and PNG file formats. The TCT and Grail+ packages are used in many research

laboratories in Canada and Brazil, [14, 28]. The export to a variety of graphics

formats simplifies the inclusion of models in publications.

PLC export Export of supervisors to PLC code was implemented as a proof-

of-concept feature in an internal release of IDES (described in Section 5.2). This

functionality relies on the BAJ experimental library developed by Francisco da Silva

at the Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.

As the future of the BAJ library is unclear, it was decided that the introduction of

this feature in a public release of IDES will be withheld.

Preliminary work on a number of other features based on the recommendations

from [32] has also been done. However, we hope that our main focus, the development

CHAPTER 3. RECOMMENDATIONS FOR DES SOFTWARE 58

of the infrastructure for plugins, will bear the most fruit as it will allow the indepen-

dent implementation of the recommended improvements. An example of such work

is the development of a plugin for conceptual and template design of DESs.

Chapter 4

Template Design Methodology

In this chapter, we propose a new methodology for the design of DES control which

we termed template design. The reader can also refer to [33, 34]. The methodology is

strongly motivated by the observations on solving DES problems and by the recom-

mendations for DES software in Chapter 3. Our ideas are also inspired by concepts

proposed by other researchers, e.g., in [74, 75, 20].

Here we provide a theoretical description of the template design of DESs. This

description must not, however, overshadow the key reason why the methodology was

developed—that is, it was conceived in order to make the application of DES control

simpler. Our goals include making the design of systems faster, helping produce more

robust designs, and automating repetitive tasks.

59

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 60

4.1 Preliminaries

The theoretical framework proposed by Ramadge and Wonham [67] allows the mod-

elling of system behavior as a set of sequences of discrete events. Practical imple-

mentations of this theory, however, have run into a number of problems. The most

significant problem is what is called “state-space explosion”. The state complexity

of a system model may grow exponentially with the number of participating subsys-

tems. Another problem for the use of the theory in practice is the fact that modeling

a system and verifying the end result are difficult and non-transparent for the users.

Further complications arise from the fact that the usability of software packages for

DES control is generally unsatisfactory and that generally there is little support for

the use of a computed supervisor in the control of a real system.

While there does not seem to be an easy solution to this complex set of issues,

the use of predefined DES units by engineers may lead to a much easier application

of supervisory control. In [20], the authors describe an approach where the controlled

behavior of a discrete-event system is designed using a set of very simple specifica-

tions. Each specification is built from a prototype structure, a template, and exercises

control over a single aspect of the system—such as the operation of a gripper. All

specifications are executed in parallel and thus, simultaneously, provide control for the

whole system. The benefits pointed out by the authors include significant reduction

of the time needed to design controllers, (e.g., one hour versus 12 hours), lower cost

of the project (the approach encourages the substitution of software complexity with

cheap hardware sensors) and more robust handling of failures (no need for complex

reset procedures). However, this approach also has some disadvantages. It is assumed

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 61

that almost all system behavior can be described as the concurrent execution of sim-

ple units without much interaction. This is not suitable for the definition of global

specifications, such as the control for nonblocking. The suggested templates seem too

simple to express more complex requirements. Furthermore, the methodology is not

cast within the supervisory control framework and it cannot take advantage of the al-

gorithms therein. The main contribution of the research in [20], in our opinion, is the

demonstration of the use of templates in the design of discrete-event controllers. The

same idea plays a central role in the methodology we propose later in this chapter.

The work of Holloway et al. on condition systems, e.g., [41], also promises to

alleviate much of the burden of designing controllers. Condition systems in this

framework are modelled as Petri nets where the firing of transitions happens if spec-

ified conditions are met (similar to input signals) and the marking of states defines

what conditions are satisfied (similar to output signals). A system is described as the

composition of simple and independent condition models. Control specifications are

also given as such a condition model, defining the start marking and the desired end

marking of the Petri net. Then, synthesis algorithms exist to produce automatically

the required task blocks (condition models to drive the evolution of the system), and

to transform the specification model into a form which will ensure the correct control

of the underlying system. Under this approach it is possible to reuse the independent

condition models for the system behavior; and a library of the frequently used models

can be maintained. It is also possible to combine task blocks hierarchically so as to

accomplish more complex tasks. Furthermore, the synthesis of the controller is fully

automated and, at the end of the process, code may be generated in C++ to control

real hardware. A software tool with a graphical interface is available for the design

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 62

and verification of condition models [76]. Among the disadvantages of the condition

systems approach is the fact that there are too many restrictions on the class of sys-

tems which can be feasibly and effectively controlled. Interdependence of task blocks

is limited to tree-form hierarchical structures and thus it is not clear how it would be

possible to specify tasks including non-sequential interactions between system compo-

nents. The authors remark that more research is needed in order to develop analysis

techniques for unwanted task interactions (such as contradictory requests). The tem-

plate design methodology presented later in this chapter has some similarity to the

condition systems framework, in terms of the independence of system components,

the high-level specification of the control requirements, and the automation of all the

steps which do not need human intervention.

Other attempts to resolve some of the problems in the application of supervisory

control, especially the state-space explosion, include modular or hierarchical super-

vision and dealing with systems incrementally. A relevant discussion of these topics

can be found in [96], [51] and [6], respectively. Of the methods mentioned, modular

supervision seems to be most mature. The system is modeled as a set of separate

modules or subsystems which may interact. Usually, control specifications can then

be given in a modular fashion as well—concerning only a subset of all the modules.

The reduction of complexity is a result of being able to compute separate, smaller,

supervisors for each separate specification. Incremental approaches to DES control

usually also rely on having a modular system model. Then, compositions of modules

are constructed only as needed in order to determine a given property of the system.

In hierarchical control, the base system is usually abstracted in a specific fashion and

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 63

then supervisors can be computed for only the simpler high-level model of the sys-

tem. Unfortunately, the research done on hierarchical supervision is more disparate

and a unifying theme is lacking [30]. Modular control is not without problems either.

When separate supervisors are constructed for each specification, it is not possible

to predict what the net effect will be of the simultaneous application of all supervi-

sors. Sometimes, due to some interdependence between the different control policies,

the system may block. Thus, after the separate supervisors are constructed, it is

necessary to check if the simultaneous application of these supervisors will lead to

blocking. For this purpose, all supervisors have to be composed, which in some sense

forfeits the benefit that is achieved by constructing separate supervisors. However,

since blocking is a global property, in the general case there is no way to avoid the

global check. Despite the fact that modular supervision does not resolve all problems,

it is certainly beneficial when managing complex systems and solutions. As discussed

in Section 3.1.2, modularity seems to be an essential tool when solving DES prob-

lems. The template methodology described next takes advantage of modular design

techniques.

4.2 Template Design of DESs

One of our observations during the study discussed in Section 3.1.1 is the following.

When faced with a new problem, subjects frequently engaged in drawing a simple

diagram of interactions between parts of the system which needed to be modeled. It

appeared that the subjects liked to isolate different aspects of a system before they

proceeded with the low-level modeling. Thus, we wanted to develop an approach to

modelling where control engineers can focus on assembling blocks of subsystems and

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 64

specifications instead of worrying about every little detail of the system. Furthermore,

our goal was to develop the approach within the framework of supervisory control,

rather than overhaul existing theoretical results and ask experts to acquire additional

background.

4.2.1 Framework

Before we proceed with the theoretical aspects of our work, we will describe a simple

system (a part of the system from Section 5.2). It will be used to illustrate the steps

of the new methodology. We will consider three system modules: a rotating table, a

robotic arm and a drill. In this subsystem, there has to be mutual exclusion between

the table and each of the other components so that the table does not rotate while

another module performs an operation. Thus, we will use two specifications: one for

the table and the arm, and one for the table and the drill. The system modules and

the specifications are shown in Fig. 4.1.

The framework for template design is largely based on the work of Santos et al.

[74, 75]. The authors propose a methodology for conceptual design of DESs using

entities and channels. Entities are the active parts of the system (e.g., workstations).

Channels are passive parts of the system which facilitate the transfer of matter and

energy between entities (e.g., conveyor belts). This framework is suitable for the mod-

eling of complex systems since it allows the simultaneous definition of both structure

and functionality.

In our framework we decided to keep all the basic propositions of [75], however,

we decided to cast the whole idea purely in DES terms. A system model consists of

a set of modules (subsystems), a set of channels (specifications), and links between

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 65

finish*

start*

(a) Modules G∗: rotating table (sub-
stitute ‘T ’ for ‘*’), robotic arm (sub-
stitute ‘R’) and drill (substitute ‘D’).

exitA*, exitB*

enterA*, enterB*

(b) Specifications E∗: mutual exclu-
sion between table and arm (substi-
tute ‘1’ for ‘*’) and mutual exclu-
sion between table and drill (substi-
tute ‘2’).

Figure 4.1: The modules and specifications used to illustrate the template design
methodology.

the modules and channels. Modules and channels as we use them here are similar to

the subplants and local specifications in [16]. Finite-state automata are used for the

models. Let I and J be index sets such that |I|, |J | ∈ N and I ∩ J = ∅. The set of

modules is

M = {Gi = (Σi, Qi, δi, q0i, Qmi) | i ∈ I}

and the set of channels is

N = {Gj = (Σj, Qj, δj, q0j, Qmj) | j ∈ J}.

Furthermore, all modules and channels have to be asynchronous, i.e.,

∀i 6= j,Gi, Gj ∈ M : Σi ∩ Σj = ∅

∀i 6= j,Gi, Gj ∈ N : Σi ∩ Σj = ∅

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 66

∀Gi ∈ M,Gj ∈ N : Σi ∩ Σj = ∅.

The requirement that modules be asynchronous is not a stringent restriction as dis-

cussed in [16]. The benefit of having asynchronous modules is mainly in being able

to make more uniform assumptions about the system. If some modules are not asyn-

chronous, they can be composed until there are no dependencies between modules.

The channels have to be asynchronous because they describe generic specifications.

It is only with the help of links that the specifications are synchronized with the

given system. In our example, M = {GT , GR, GD} and N = {E1, E2} (as shown in

Fig. 4.1).

In order to relate modules and channels, and determine what specifications should

be enforced on the different subsystems, one would link the appropriate events. Let

ΣM =
⋃

Gi∈M Σi be the set of all events in the modules and ΣN =
⋃

Gj∈N Σj be the

set of all events in the channels. Then, the links in the system model will be given

by the function

C : ΣN → ΣM .

In other words, the function defines links between events of channels and events of

modules. The interpretation of the link C(τ) = σ is that the event τ in the given

channel should be considered equivalent to the event σ of the given module—thus

relating the generic specification to the given system. Synchronization between the

modules and channels is established, in effect defining the protocols for the transfer

of information between parts of the system. For all Gj ∈ N , the restrictions of the

function,

C|Gj
: Σj → ΣM ,

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 67

have to be injective to ensure the consistency of the model. The function

C−1 : ΣM → 2ΣN

is the inverse of C and, given Gj ∈ N , the restriction of C−1 to Gj is

C−1|Gj
: ΣM → Σj,

where C−1|Gj
(σ) equals the only element of C−1(σ)∩Σj if it exists, and is undefined

otherwise.

In our example, we need to link channel E1 to the table, GT , and the robotic

arm, GR. Similarly, we need to link E2 to the table and the drill, GD. The channel

events marked with “A” will be linked to events of the table, while the events marked

with “B” will be linked to the arm (in E1) and the drill (in E2). Thus, we define the

function C as follows:

C(enterA1) = startT ; C(exitA1) = finishT ;

C(enterB1) = startR; C(exitB1) = finishR;

C(enterA2) = startT ; C(exitA2) = finishT ;

C(enterB2) = startD; C(exitB2) = finishD.

As a result, for example, C−1(finishT) = {exitA1, exitA2} and C−1|E2
(finishT) =

exitA2.

After a system is modeled in the proposed framework, modular control can be

applied to obtain supervisors for the separate specifications. This is possible since,

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 68

finishT , finishR

startT , startR

Figure 4.2: The synchronized version of E1.

under the right interpretation, the model is equivalent to that of a regular modular

system. In our work we propose the use of an optimized version of modular control,

namely local modular control [16]. The precondition for the application of this method

is satisfied, i.e., the participating modules are asynchronous. All modules which

are linked to a channel participate in the subsystem influenced by the specification

determined by the channel. Let G = (Σ, Q, δ, q0, Qm) ∈ N be a channel. Then define

G′ = (Σ′, QE, δ′, q0, Qm) as the synchronized channel G where all channel events have

been replaced with their corresponding module events, i.e.,

Σ′ = {σ | ∃τ ∈ Σ, C(τ) = σ},

δ′(q, σ) = δ(q, C−1|G(σ)).

Furthermore, define

C(G) = {Gi | Gi ∈ M, Σi ∩ Σ′ 6= ∅},

the set of modules influenced by G.

In our example, in order to synchronize the channel E1, the events are replaced

as specified by the function C (as shown in Fig. 4.2). Channel E2 is synchronized in

a similar way. Furthermore, C(E1) = {GT , GR} and C(E2) = {GT , GD}.

For every channel Gj ∈ N , all the modules influenced by it are composed via

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 69

synchronous product.

Gj
sys = (Σj

sys, Q
j
sys, δ

j
sys, q

j
0sys, Q

j
msys) = ‖C(Gj)Gi.

Then all events in the subsystem which do not appear in the synchronized channel

are applied as self-loops to all states in the synchronized channel, i.e., the channel

has no influence on the occurrence of these events.

Gj
spec = selfloop(G′

j, Σ
j
sys \ Σ′

j)

Finally, the algorithm from [67] for the construction of the supremal controllable

sublanguage of the synchronized channel with respect to the relevant subsystem is

invoked.

Sj = supcon(Gj
sys, G

j
spec).

As a result, local supervisors for each channel are constructed.

In our example, G1
sys = GT‖GR and G2

sys = GT‖GD. All events in each subsystem

are linked to the corresponding channel, e.g., the events in G1
sys are startT , finishT ,

startR and finishR—and all of them are used in the synchronized channel E ′

1 (shown

in Fig. 4.2). Thus, no self-loops are introduced into the channels, i.e., G1
spec = E ′

1 and

G2
spec = E ′

2. The supervisor S1 obtained for G1
spec with respect to G1

sys is shown on

Fig. 4.3. It is easy to see that the simultaneous operation of the table and the arm is

avoided. The supervisor for G2
spec is analogous.

The last step involves checking whether the supervised system is nonblocking, as

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 70

finishR startT

finishTstartR

Figure 4.3: The supervisor for G1
spec with respect to G1

sys.

defined in [16]. As long as the supervisors are nonconflicting, i.e.,

‖Gj
Sj = ‖Gj

Sj,

the nonblocking property is satisfied and, furthermore, the concurrent operation of

the modular supervisors is optimal (i.e., equivalent to a monolithic solution). In our

example, the two supervisors for channels E ′

1 and E ′

2 are nonconflicting.

4.2.2 Templates

The next advantage of our methodology is that it allows the use of templates. A

template is simply a model of some discrete-event behavior. In the supervisory control

setting, the model would be an FSA. In other words, any FSA can be a template.

The idea behind templates is that if they define some frequently used behavior, one

need not manually create a separate FSA each time this behavior is needed. Instead,

the software can make a copy of the template, or instantiate the template.

Let G = (Σ, Q, δ, q0, Qm) be a template. The instance with index p is defined as

Ins(G, p) = (Σp, Q, δp, q0, Qm), where the events of G are indexed with p. I.e.,

Σp = {σp | σ ∈ Σ},

δp(q, σp) = δ(q, σ).

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 71

Thus, for example, creating the DES modules for ten workstations would be reduced

to instantiating the corresponding template with ten different indexes. Since the

copies can be made automatically, the process is both faster and less error-prone.

Furthermore, if the templates have been designed by experts and thoroughly tested,

any user can use them with the same degree of reliability.

Since templates can describe both system behavior (i.e., modules) and restrictions

on behavior (i.e., channels), the use of templates within our framework is very natural.

Suppose there is a library of templates Lib = {Gk | k ∈ K}, where K is an index set

such that |K| ∈ N, K ∩I = ∅ = K ∩J . Then, the set of modules, M , participating in

a design can be created by instantiating the required templates, i.e., ∀Gi ∈ M (where

i ∈ I), ∃Gk ∈ Lib : Gi = Ins(Gk, i). Since the events of every template instance are

named in a unique way, all modules will be asynchronous as required. Similarly, the

set of channels, N , can be created by instantiating templates.

The example we used in Section 4.2.1 is an ample illustration of this idea. All

system modules—rotating table, robotic arm and drill—share the same basic behav-

ior, as shown in Fig. 4.1(a). The mutual exclusion specifications also share the same

behavior, as shown in Fig. 4.1(b). Thus, if templates are used, the system modules

can be instantiations of a generic “workstation” template, while the channels can be

instantiations of a generic “mutual exclusion” template. If one looks again at the

caption of Fig. 4.1, something very similar is described verbally.

4.2.3 Parametrization

A further improvement to the template design methodology can be made by consid-

ering parametrization of the template behavior. For example, if one would like to

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 72

create templates for buffers, a separate template has to be constructed for all buffer

capacities that need to be considered (e.g., buffer with two slots, buffer with three

slots, etc.) However, it can be easily seen that the basic workings of a buffer are

the same regardless of capacity. It would be much more convenient if there were

a single “buffer” template which is parametrized in terms of capacity—and then at

instantiation one would be able to choose the specific capacity to be used.

One possible approach to the parametrization of FSAs is described in [15]. There,

a regular FSA is augmented with a data collection. The data collection is a vector

of scalars which can range over some set. A vector of unary functions is associated

with each transition in the FSA. For example, a buffer can be modeled as a single

state with two self-looped transitions, “insert” and “remove”, and a single integer

in the data collection to keep track of the number of items in the buffer. Then, the

functions “+1” and “−1” will be applied to the integer when “insert” and “remove”,

respectively, occur. In such a system, control can be based on predicates about the

current state of the system and on the current value of the data collection. The

authors propose a method to compute the supremal controllable sublanguage of a

system by incrementally backtracking with the predicates until the control decisions

do not attempt control of uncontrollable events. Unfortunately, the use of this model

may easily result in non-regular behaviors and specifications. This is the reason why

the model cannot be readily applied in the template framework proposed in this

work. A potential solution would be to restrict the type of data collections that can

be used. For example, each scalar in a data collection could be restricted to belong to

a closed integer interval. However, even in this case it is necessary to find an efficient

transformation from the parametrized model into a “simple” FSA.

CHAPTER 4. TEMPLATE DESIGN METHODOLOGY 73

4.3 Summary

We introduce the notion of DES templates within the framework of supervisory con-

trol. Typical behaviors for both DES modules and specifications are represented in an

abstract way. The control engineer creates instances of these abstractions and then

needs only to specify the way the instances interact. System modeling and the design

of specifications occur simultaneously. The computation of the supervisory solution

can be automated. Through the use of this methodology, we expect the following

advantages:

• Faster design of systems. The use of pre-built templates not only reduces the

time to mechanically input new FSAs but also the time to mentally consider

low-level details of FSA implementations.

• More robust designs. Fewer errors may be made during the design since it is

not necessary to manually copy FSAs and to keep track of the names of events

in different modules and specifications.

• Easier design. Instead of considering the FSAs which underly every template,

the designer can focus their creative effort only on the important task of deter-

mining which modules and channels are to be used and how to link them. The

creation of supervisors is completely automated.

In the following chapters, we discuss the implementation of the template design

methodology (Chapter 5) and we evaluate its usability (Chapter 6).

Chapter 5

Implementation of the Template

Design Methodology

In this chapter, the implementation of the proposed template design methodology for

modelling DES problems will be discussed. Instead of designing new software from

scratch, we decided to take advantage of the extensibility of the IDES package already

being developed at Dr. Rudie’s research laboratory.

5.1 IDES Software

The IDES software has been under development since 2003, starting with a proof-

of-concept design for a graphical tool for DES. During the early days, an interaction

style for “natural” drawing of finite-state automata was developed. Also, a subsystem

integrating LATEX rendering into the graphical environment was implemented.

In 2005, a new team of developers implemented a number of FSA algorithms such

74

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 75

as checking for language containment and intersection, and some DES-specific algo-

rithms such as parallel composition and the computation of the supremal controllable

sublanguage. Additionally, the IDES interface was redesigned to allow simultaneous

work on a number of DES models. This software was released as IDES version 2.

This version was also used in the observational study described in [32].

The first two versions of IDES allowed us to collect feedback and to understand

better what are the technical and user requirements for the project. In 2006, a com-

plete overhaul of the code was made. We proposed a newly designed, extensible

architecture and guided the reimplementation of IDES. Similar to the previous ver-

sions, the software was developed using Java. The new architecture emphasized the

separation of model and presentation. Furthermore, it prepared the ground for the

use of different types of DES models in addition to FSAs. Interoperability with other

DES software was improved through a redesigned, model-independent IO subsystem.

On the surface, all key aspects of the interactions style were preserved, with the in-

corporation of many improvements such as the unique “film-strip” workspace. The

reimplementation was released publicly as IDES version 2.1. By the end of 2008, five

iterations of this version were released. In addition to bug fixes, new features were

introduced, such as the “undo” capability.

The study of DES problem solving served as the jumping board for the develop-

ment of the next major version of IDES, version 3. The new version shares much of

the code with IDES version 2.1. However, some architectural changes were made to

accommodate the development of external plugins which can extend the package by

introducing new model types, algorithms or IO filters.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 76

5.2 Prototype Tool for Template Design

The work on the implementation of the template design methodology started in 2007,

as a part of a research project at the Federal University of Santa Catarina, Brazil. We

implemented a prototype of the user interface for the methodology and conducted a

test application for the control of a robotic testbed. In this section, we will highlight

the most important parts of our experience. The full report can be found in [31].

The prototype was implemented as an extension of IDES version 2.1, which re-

sulted in full access to all FSA functionality available in the original software. The

implementation included a graphical interface where the user of the software can cre-

ate and manipulate the design elements using the mouse cursor. A screenshot of the

interface is shown in Fig. 5.1.

Figure 5.1: The interface of the prototype template design software.

Since the purpose of template design is to make the application of DES theory

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 77

easier, we decided to try to streamline the complete process of application: from

modeling to control of the real hardware. In many cases the real system is controlled

by a Programmable Logic Controller (PLC); this was the case in the robotic testbed

as well. Thus, we considered the generation of PLC code from the template design.

There are many ways to convert FSAs into code, however, the method proposed in

[17] seems to be suitable for two reasons: it converts FSAs directly into PLC code,

and it is designed with modular control in mind. Since this approach is generic, the

users still need to make manual modifications to insert hardware-specific instructions.

In our software, for each event in the template design the user can specify a snippet

of PLC code. Then, during PLC code generation, this code will be incorporated into

the automatically produced code.

The prototype system for template design was used to design a controller for a

robotic testbed at the Department of Automation and Systems, Federal University

of Santa Catarina, Brazil. The functionality of the system, shown in Fig. 5.2, is to

retrieve parts from an input buffer, perform operations on the parts and test if the

operations were successful. Depending on the outcome of the test, the given part is

output into one of a number of buffers (such as “accepted”, “reprocess”, etc.) The

system is controlled via a Siemens S7-200 series PLC unit.

The application of the template design methodology to a real project, even though

very small, brought some interesting insights from the participating engineering stu-

dents. Surprisingly, the biggest advantage of the design methodology does not seem

to be the ability to use templates per se. According to the feedback from the users

of the software, the biggest benefit of the proposed methodology comes from the fact

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 78

Figure 5.2: The robotic testbed where template design was applied.

that the template design environment makes it very easy to model and remodel sys-

tems, i.e., to create prototypes in the initial stages of system design. It is simple

to replace modules and channels and then generate the corresponding supervisors to

see what happens. The users no longer have to keep track of event name consis-

tency between modules and between specifications. Synchronization is not achieved

by naming events consistently but rather by visually linking them. Then, it is easy

to try different synchronization strategies and it is possible to use a single template

instance in a number of ways without having to always rename events. This property

seemed to be especially liberating since renaming events is laborious and error-prone.

In our project it was necessary to go through a large number of iterations where the

system was simplified with different approaches. This rapid prototyping would not

have been feasible if all operations had to be called manually and if event names had

to be changed for every new approach.

From the observations made during the application of the template design method-

ology, it becomes clear that future work should focus on the usefulness for rapid

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 79

prototyping. For example, it is desirable to allow the creation of conceptual designs

without having to instantiate specific templates, i.e., by creating “placeholder” mod-

ules and channels. The user will be able to delay the assignment of templates to these

placeholders until more of the overall design is ready.

The prototype implementation and the test application of the methodology served

as a great motivation for the following, comprehensive implementation which we

discuss next.

5.3 Implementation

The comprehensive implementation of the template design methodology required the

introduction of a completely new modelling environment in IDES. Thus, in line with

the original design goals for the IDES project, it was decided to first refine the ar-

chitecture of the program to accommodate externally-developed plugins. Then, the

template design modelling environment was implemented as a plugin. Besides the

most obvious goal of reducing development effort, this decision was beneficial in the

sense that the API for plugins was immediately verified through the newly created

plugin. In fact, the development of the plugin API and the template design plugin

(TD plugin) proceeded largely concurrently. Last but not least, the source code for

the TD plugin will be made available publicly, thus serving as a reference implemen-

tation for IDES plugins.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 80

5.3.1 Plugin architecture

Since version 2.1, IDES has been internally modularized with the expectation of the

creation of an API for plugins. Thus, it was not hard to refactor the code and expose

this functionality so that independently developed software can take advantage of it.

There are two parts of the IDES API. The first part is a collection of services

available to plugins (or any other IDES code). The second part is a set of programming

interfaces for plugins.

IDES services

The services available to plugins include:

Core Access to the user interface, the workspace manager, IO subsystem, settings

interface, resource manager, utilities, and the annotation mechanism.

Undo Access to the undo manager.

Notice Access to the subsystem for managing warning and error notices.

Latex Access to the LATEX rendering subsystem.

Cache Access to the persistent caching subsystem.

FSA Model The interface for FSA models as implemented in IDES.

The annotation mechanism merits some explanation as it underlines the main

design philosophy undertaken in IDES—that of simplicity. Since the beginning, it

was anticipated that model elements may need to “evolve” and eventually contain

attributes that were not originally planned. For example, events in the classical

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 81

DES approach have only one attribute—that describing their controllability. Sub-

sequent research introduced other attributes, such as observability or enforceability.

Similarly, some research involving hierarchical DESs calls for the ability to associate

(lower-level) FSAs with the states of a (higher-level) FSA. Thus, it is not feasible to

decide a priori what features should be supported by each element of a DES model.

There are a number of ways to introduce flexibility in a software system, such as

by using subclassing in object-oriented languages. In IDES, however, we opted for

a much more simple mechanism where various information can be added to objects

during run time—similar to the way objects can be viewed as associative arrays in

the JavaScript language [44]. Each entity (or class) of interest can be annotated with

arbitrary attributes of arbitrary type. To this end, we introduced an Annotable inter-

face which allows the association of any Java Object with any key of type String. The

mechanism can be used to dynamically add information to entities, as needed. The

only implicit requirement of this approach is that software must be able to handle

missing annotations gracefully. As shown in practice during the development of IDES,

the drawback of a less rigid, and thus more messy, approach was far out-weighed by

the simplicity of implementing new features. The annotation principle is not only

available to plugins, but is also used within the IDES code. The graphical layout of

FSA models is implemented simply as a set of annotations of the states and transi-

tions of the model. The file format used by IDES also relies on a description of the

basic model, annotated with various additional information.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 82

Interfaces for plugins

Plugins for IDES need to implement one or more of the interfaces published in the

API. Each interface determines what type of functionality the plugin implements.

There can be a number of different types of plugins.

Model A plugin which implements a new type of model. Such a plugin is responsible

solely for the maintenance of the consistency of the model and needs to imple-

ment only a limited number of methods, such as access to the model name.

Upon initialization, the plugin must register with the repository of available

model types.

Presentation Each model type requires one or more Presentations to display the

model. A plugin can register a Toolset which specifies which presentations will

be used to display the model. The presentations usually need only provide the

user interface element with which the user will interact. The toolset needs to

provide a detailed descriptor of the presentations, menus and toolbars to be

initialized when a model is loaded.

IO Plugins which can save and/or load models need to register with the IO subsys-

tem. When loading or saving a model is required, the subsystem will automati-

cally select the appropriate plugin for the given model type. Plugins can register

to process the main data of a model (e.g., the mathematical description) or to

process meta-data (e.g., annotations). There can be more than one meta-data

section in a file, allowing for the annotation of models by different plugins for

different purposes.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 83

Import and export Besides loading and saving of native models, plugins can reg-

ister to import from or export in non-native file formats. For example, the

JPEG-export functionality in IDES is internally implemented through the plu-

gin interface.

Operation A plugin which implements a DES operation. Such a plugin needs to

specify what kind of inputs it needs, what outputs it produces, and implement

the perform method. Filter operations, where the operations act directly on

the inputs, are also supported. Upon registering with the operations manager,

an operation becomes automatically available in the Operations dialog in IDES.

5.3.2 Template design plugin

The TD plugin introduces a new model type, the template design, to IDES. As a

result, it was necessary to implement all interfaces provided in the plugin API. Design

decisions needed to be made not only about the software architecture but also about

the user interface of the plugin.

User interface

One of the biggest motivations for the template design methodology was the idea to

offer the ability to create conceptual designs when solving DES problems, and to allow

for rapid prototyping. Naturally, this led to the choice of a graphical interface for the

modelling environment. Some insights about the user interface were also obtained in

the initial proof-of-concept implementation (discussed in Section 5.2).

The TD plugin interface is shown in Fig. 5.3. It consists of three main parts: the

modelling area, the template library and the consistency validator.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 84

Figure 5.3: The user interface of the template design plugin.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 85

Figure 5.4: The template design modelling area.

Modelling area The modelling area, see Fig. 5.4, is where the conceptual design

of a DES solution is built. Users can create modules and channels and establish links

between them. The interaction is mouse-based. The model is presented graphically,

as a diagram. Modules are represented by rectangular icons. Channels are represented

by elliptic icons. This allows for the immediate visual recognition of the two classes of

entities. Links are represented as lines connecting modules and channels. If multiple

events in two entities are linked, only one line is drawn between the entities, labelled

with all corresponding event pairs. The mouse, and pop-up menus are used to create

or remove design elements and to modify the design as needed.

The following approaches were assumed in the design of the visualization and

interaction style.

Context-centric The interaction with the design is context-centric. All elements

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 86

of a design can be manipulated locally by clicking, dragging, or by invoking a

(context-sensitive) pop-up menu. Furthermore, some operations become avail-

able upon the mouse entering the context of an element—such as the appearance

of “connectors” (small circles) which can be used to directly link entities. In

essence, the goal was to make all relevant interactions available immediately

from the context of an element. Inspiration was also drawn from the “pie

menu” where menu actions are available from a circular shape around the point

of interest [8]. The following operations are available by directly manipulating

modules or channels:

• Relocate

• Open underlying FSA model

• Relabel

• Link to another entity

• Compute local supervisor (channels only)

All other operations are available from the context-specific pop-up menus of the

elements.

Modeless The use of different modes in user interfaces is sometimes necessary, how-

ever, it may lead to confusion and may reduce the efficiency and desirability

of the interface, [69]. Furthermore, remembering which mode of interaction

one uses could put an additional strain on the limited capacity of the human

working memory. The interface for the modelling environment was designed so

that the user interaction is modeless. In particular, it is not necessary to switch

between different “tools” when modelling. This is possible, in part, by having

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 87

a context-centric approach where the palette of available actions is naturally

restricted by the affordances of the manipulated object.

Unconstrained Without the establishment of many restrictions, it is easy to create

inconsistent template designs. For example, linking the events of two modules or

two channels breaks the requirement that FSAs in the model be asynchronous.

Similarly, linking a single event from a channel to multiple module events leads

to an inconsistent design. One way to tackle this issue is to prevent the user

from creating inconsistent models, by constraining the available operations when

needed. For example, Norman argues that constraints can be used in product

design to prevent undesired use [64]. Indeed, constraints are already used in the

FSA-drawing interface of IDES, e.g., when the user draws an edge to an empty

space, a new node is created there automatically, preventing the creation of an

inconsistent model (containing an edge without a target node). In the case of the

template design interface, however, we decided not to constrain the user actions

and to allow the design of inconsistent models. This decision was motivated

by two factors. First, the constraints would have to be numerous, dynamic,

and complex. Under such conditions, it is very likely that the users would not

be able to form the correct mental model of the interface. More specifically, it

would be hard to obtain a mental model with a sufficiently strong predictive

power—a key property according to Norman, [63]. Thus, it is likely that users

would experience unexpected program behavior and the usability of the software

would be greatly reduced. The second factor in making the decision is that

the anticipated use of the software will be the rapid prototyping of control

solutions. As already discussed, solving complex problems may involve several

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 88

iterations, where the requirements are refined, or even replaced, as the solution

takes shape (e.g., see [97]). For example, it may not be clear from the very

beginning which parts of a model should be the modules and which ones should

be the channels. However, the user may wish to establish links between them to

denote some sort of dependency. The construction of consistent designs requires

one to make many decisions for which information may not be available in the

very beginning. Not constraining the user interaction lets users explore the

solution space more freely, gradually refining an initial “sketch” to a consistent

formal model.

Flexible The interface was designed to be flexible and accommodate a number of

interaction styles. For example, it is possible to link entities either by clicking,

dragging, or though a menu. Furthermore, most operations which can be ac-

complished by direct action (such as labelling an entity), can also be accessed

through a pop-up menu. Flexibility is intertwined also with the lack of con-

straints in the interface. Different sequences of actions are acceptable in the

creation of a template design. For example, it is possible to link all entities first

and then decide which ones are modules and channels, or to decide first which

entities are modules and channels and then link them.

Consistent Consistency is an essential property of usable systems [18, 64]. The

interaction style when linking entities in the modelling area and when linking

individual events in the event linking dialog is the same. Similarly, there is no

essential difference, in terms of user interaction, between modules and channels

in a design. As the template design environment was implemented as a plugin

for IDES, it was also important to make sure that it integrates well with the

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 89

rest of the interface. Thus, all common interface elements were shared between

the standard IDES environment (FSA modelling) and the template design envi-

ronment. For example, the dialog box for labelling nodes and labelling entities

appears and behaves in exactly the same way in both environments. Further-

more, instead of introducing a new environment for the FSA models of entities,

when the user wishes to work on a FSA model, it is loaded into IDES in the

same way that a regular FSA model would.

Zoomable Zoomable interfaces are interfaces where the user can select the level of

detail they want to use for different elements [25]. While the interface of the

template design environment does not subscribe completely to the zoomable

interface paradigm, the template designs are essentially conceptual, or higher-

level views of a DES. Thus, users can “zoom into” each entity to explore it in

more detail, i.e., examine the lower-level FSA model. Similarly, it is possible to

“zoom out” of lower-level FSA models to see the higher-level template design.

The interface offers some other features on which less emphasis was put. For

example, the user is able to customize the appearance of entities by using colors.

Thus, it is possible to encode different aspects of a model to allow for quick visual

segregation.

Template library The template library is the second important part of the user

interface (shown in Fig. 5.5). While the modelling area allows for the creation of

conceptual designs, it is the template library that allows for the use of templates in

the design.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 90

Figure 5.5: The template library.

The template library is simply a repository of FSA models which can be instanti-

ated, or copied, into the design. It is possible to add any FSA model to the library,

both from a template design and from the regular FSA models loaded in IDES. Each

template (i.e., FSA model in the library) has an icon to represent it. Currently, icons

can have different colors and different IDs—short descriptions, a few characters long.

As well, each template has to have a longer description. Once added to the template

library, templates can be modified. Not only is it possible to change the appearance

of the icon and the description, but also changes to the FSA model can be made.

Templates can be removed from the library as well.

The user can make use of the templates in a very simple way. A template can

be dragged from the library to the modelling area to create an instance of it, i.e.,

to create an entity whose underlying model is the given FSA. The entities will be

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 91

Figure 5.6: Two instances of the same template. The model of the instance on the
right has been modified after the instantiation; this is denoted by the addition of a
marker in the icon.

represented with the icon of the instantiated template. It is possible also to drag a

template onto an existing entity in the design, to replace the FSA model of the entity.

Lastly, in line with the context-centric approach of the interface, the pop-up menu

of each entity allows the replacement of the FSA model with a specified template, or

the addition of the existing FSA model to the template library.

In order to differentiate between entities which contain the original version of

a template model, and entities whose template model has been altered, the icons

of entities with modified models are augmented with a small symbol (as shown in

Fig. 5.6).

Consistency validator The consistency validator, as seen in Fig. 5.7, is the last

major part of the user interface. It visualizes the inconsistencies, if any, in a template

design.

One of the design choices for the interface was not to constrain the modelling

process of the user. As a result, it is possible to create inconsistent template designs.

However, the ultimate goal of most users is to model a DES correctly and to obtain

the supervisory solution. This implies that, at some point, most users would like to

arrive to a consistent design. It was already discussed that the rules for consistent

designs are multiple and not necessarily obvious. The proposed solution involves

automatic consistency evaluation. The main goals in its introduction were to allow

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 92

Figure 5.7: The list of consistency issues for template designs. In this case, a few
sample issues are listed.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 93

the users to assess the consistency of a template design, but not to impose such an

assessment.

First, all potential inconsistencies in a template design were enumerated and de-

scribed. In total, eight types of errors were identified (such as a link between two

channels) and three types of potential issues (such as a module which is not linked

at all). Each issue was described in plain language. For example, if there are channel

events which are not linked, the description will be “One or more channel events are

not linked.”

Second, a validator was implemented which checks the consistency of the design

continuously (after each modification of the design). The output of this validator is

displayed in an unobtrusive way, so as not to interfere with the design process. The

output is available in three places in three different forms:

1. The status bar of IDES displays a summary of how many inconsistencies are

found in the current design. This information is always available to the user

(e.g., for a quick reference), however, it is very unobtrusive and easy to ignore

if so desired.

2. There is an alternative view of the modelling area, entitled “Consistency”. In

this view, all inconsistent elements of the design are highlighted in orange.

Otherwise, the modelling interface is not affected at all and the user can work

with either view (regular or highlighting) in the same way, and can switch

between them at will. With this view, the user can obtain a more immediate

sense of the inconsistencies in the model. However, the workflow need not be

altered, as the modelling interface behaves in the same way as when the regular

view is used.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 94

3. The full list of consistency issues in a model is available in a separate tab,

entitled “Consistency issues”. Each item in the list contains the description

of the issue and specifies which elements are affected. In some cases, it also

offers shortcuts for solving the issue. For example, the “Link must connect a

module and a channel” has shortcuts to convert one of the linked modules into

a channel (or, conversely, to convert one of the linked channels into a module).

Clicking on a issue highlights the affected elements in the “Consistency” view

of the modelling area. Through the full list of issues, users can explore in detail

all issues and learn about the causes for the issues. It is anticipated that this

list will also help users construct the correct mental models of what the causes

of issues are and, eventually, learn how to create designs without consistency

issues.

By offering different visualizations of the consistency issues, the users are able to

select the level of detail they want to see. Novice users can take advantage of the

detailed list of issues, while expert users may not need to refer to any of the available

information. All visualizations are unobtrusive and do not restrict or interfere with

the design process.

Implementation

In order to implement all the required functionality of the TD plugin, it was necessary

to take advantage of all plugin interfaces.

Model The base of the TD plugin is the implementation of the template design

model. Much like the implementation of the FSA model in IDES, the mathematical

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 95

description of the model structure is independent from the information necessary to

display the structure.

The mathematical description includes elements for the modules, channels, and

event links. The implementation is very simple, with only three classes. In order

to allow for incomplete models, consistency is not enforced at the model level. For

example, it is possible to have a module without an associated low-level FSA descrip-

tion, or to have a link between two channels. Furthermore, the links do not point

to the event objects which they link, but rather refer to the events by name. Thus,

it is possible to remove the linked events from the FSA models of modules or chan-

nels without affecting the links. The possibility for such inconsistency is desired in

order to allow for experimentation at the FSA model level without worrying about

the immediate impact on the higher-level template design.

The model layout information is encoded with the use of visual elements, mir-

roring the elements from the mathematical description. Modules and channels are

represented by entities, while links are represented by connectors. Entities carry addi-

tional information about location, size, icon and label. Connectors visualize the links

between events from different entities. If there is more than one event link between

the same entities, these links are automatically grouped into the same connector.

Entities are maintained as annotations of the corresponding modules and channels.

Connectors do not carry any specific layout data and thus are computed when needed

from the layout of the entities. The only exception are the connectors which do not

link specific events. This will be the situation when the user links two entities but

does not yet specify which events from these entities should be linked. In this case,

there will be no underlying links in the mathematical description of the model. Such

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 96

“empty” connectors are added as layout annotations to the model.

Presentation The presentation interface describes any user interface fragment to

be employed when visualizing a model. The four presentations which are part of the

TD plugin subsume the user interface parts identified in Section 5.3.2. The modelling

area has two views, “regular” and “consistency highlighting”, each one implemented

as a separate presentation. The highlighting view is a subclass of the regular view.

The other two presentations are the template library and the list of consistency issues.

These presentations are described and packaged together by the toolset for the tem-

plate design model. Thus, when the user loads a template design model, the toolset

will provide a descriptor of what presentations to use in the interface for the given

model.

All these presentations can be used together, concurrently. A change to the model,

initiated via any of them, will be reflected in the other ones immediately and auto-

matically. This functionality is possible because of a messaging mechanism in the

template design model. Presentations for a model can (but do not need to) “hook”

onto the model and receive a message any time there is a change to the model. The

messaging mechanism is synchronous and uses the same approach as the event-passing

in the GUI library in Java, Swing. It is necessary to implement a set of callback meth-

ods and then register as a “listener” with the model. Presentations which no longer

wish to track changes in a model can unregister. In the TD plugin, the modelling

area views and the consistency validator register with the model to track changes,

while the template library presentation does not register as it is not affected by any

changes to the model.

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 97

IO The TD plugin also contains a class responsible for the storing and loading of

template design models. The plugin reads and writes not only the mathematical

description of a model, but also the annotations with the layout information. The

latter are saved in a meta-data section of the file. The IO for a template design,

however, has some specifics which are not common to other types of models. As a

template design is only a high-level, conceptual description of a system of low-level

FSA models, it is also necessary to include IO for these models when saving or loading

the template design. As IDES already has support for the IO of FSAs, we decided

to make use of it instead of creating a custom solution. Thus, the FSA models are

not saved as part of the template design file. Rather, they are saved as independent,

regular FSA model files and the template design file contains only links to them. The

drawback of this approach is that users have to manage a number of files for a single

template design model. However, there is no need to develop a new IO solution for

FSA models which has to be maintained up to date with the rest of IDES, and users

are able to access the models from a template design independently.

The template library also requires an IO implementation, however, it is indepen-

dent from the IO interfaces in the plugin API. The only way it interacts with the IDES

IO subsystem is through a small class which registers as a meta-data loader/saver for

FSA models. When the system saves or loads the FSA model of a template, this

class steps in and processes the extra data for the template, e.g., the description of

the template icon.

Import and export The import and export interface in the plugin API was im-

plemented to provide JPEG and PNG export for template designs. The FSA models

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 98

from such a design can be exported to all file formats which IDES supports. No sup-

port for import is provided; to our best knowledge, there is no other implementation

of the template design methodology.

Operation Three operations for template designs were included with the TD plu-

gin. Each operation is just an encapsulation of a number of standard DES operations,

together with algorithms for the renaming of events according to the event links in a

template design. The three operations are the following:

tdchannelsup This operation is used to compute the local supervisor for a channel.

It renames all events in the models involved in the computation, as necessary,

composes all modules connected to the channel, and computes the supervisor

for the channel with respect to the composed modules.

tdcentralsup This operation is used to compute the centralized supervisor for the

whole template design. It renames all events as necessary, composes all mod-

ules into a monolithic system model, composes all channels into a monolithic

specification, and computes the supervisor for the specification with respect to

the system.

tdmodularsup This operation is used to compute the modular supervisory solution

for the whole template design. It invokes the tdchannelsup operation for every

channel in the template design, and then checks if the resulting supervisors are

locally modular, i.e., if the solution is non-blocking and optimal.

With the exception of the algorithm for the renaming of events according to the

event links, no new algorithm is introduced with the above operations. The template

CHAPTER 5. IMPLEMENTATION OF TEMPLATE DESIGNS 99

design operations rely on the DES operations already available in IDES to perform

the necessary computations.

Overall, the implementation of the TD plugin for IDES has more than 130 classes

and more than 7000 lines of method code. The software is entirely written by the

author and is released under the BSD license.

Chapter 6

Evaluation of the Template Design

Methodology

One of the main results of the investigation of problem solving in the area of DES con-

trol problems, [32], was the proposal of the template design methodology (Chapter 4).

The software to support this methodology of DES problem solving was implemented

as a plugin for the IDES package (Chapter 5). The last part of this work describes

the evaluation of the usability of this implementation. It shows that, indeed, the

proposed methodology of DES problem solving is advantageous in comparison to the

classical approach.

6.1 Method

The template design methodology was developed in order to provide a more efficient

way to model DES problems and to speed up the process for obtaining control so-

lutions for such problems. The informal evaluation of the prototype implementation

100

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 101

of this methodology (discussed in Section 5.2 and [31]) showed that the methodology

could be useful in solving DES control problems, especially when rapid development

and prototyping of a supervisory solution is needed.

After the implementation of the template design methodology as a plugin for

the IDES software package, it was necessary to perform a more formal evaluation

of the approach. As there are no other implementations of the methodology, it is

unavoidable that any evaluation will test the combined effect of both the approach

and the specific software implementation. Thus, in the rest of this chapter, we will

refer to the methodology and the implementation interchangeably. This is done with

the understanding that, in fact, we refer to the combined effect.

6.1.1 Test conditions

The main focus of the evaluation is the usability of the implementation. As the

proposed methodology for DES problem solving is new and there are no established

results for the performance using such a methodology, it is necessary to use compara-

tive evaluation, where the performance is contrasted with other methodologies. The

software for template design was implemented as a plugin for IDES version 3 which

originally supports only traditional methods of solving DES problems, using FSA

models as proposed in the Ramadge and Wonham framework [94]. Thus, the most

natural form of evaluation was to contrast the performances when IDES version 3 is

used with and without the TD plugin. In this way, any difference in the performance

would be attributable mostly to the impact of the plugin. The overall interface of the

software remains the same. The condition when IDES is used without the TD plugin

is called the “classical approach”, while the condition when IDES is used with the

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 102

TD plugin is called the “template design approach”.

There are two main types of experiment designs which describe how test conditions

are assigned to subjects. In the between-subjects design, one condition is assigned per

subject. In the within-subjects design, all conditions are assigned to every subject

(Chapter 4 in [39]). The main advantage of the between-subjects design is that

no learning can be transferred between earlier and later tasks, as only one task is

performed by a given subject. This design, however, also has higher demands on the

size of the subject pool. If there are two tasks and ten data points are needed per task,

in total twenty subjects will have to participate. In comparison, for within-subjects

designs only ten subjects will have to participate since each subject will perform

all tasks. Recruiting subjects is a very challenging task for the evaluation of DES

problem solving; a similar problem was faced in [32]. The expected low recruitment

rates confined our study to using a within-subjects design.

Preventing learning in within-subjects experimental designs is a big challenge.

Subjects unavoidably learn during the performance of a task and this could affect

their performance in consequent tasks. In some cases, due to the nature of the

tasks, the effect of learning can be negligible. For example, in tasks where subjects

use different pointing devices, [58], little, if any, learning can be transferred from

one device to another. However, in tasks which involve problem solving, solving a

problem once has a huge impact on the performance when the problem is solved

again. In one-off problems (involving insight), gaining the right insight is equivalent

to solving the problem [46]. Then consecutive solutions of the same problem involve

simply recalling the insight. In problems where successive steps need to be taken,

the mechanization of thought can lead to significant gains in the speed of problem

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 103

solving [56]. Consecutive solutions to the same problem would involve recalling and

re-enacting the sequence of steps which lead to the solution.

A traditional method to counter the effect of the transfer of learning is to as-

sign randomly and to counterbalance the order of tasks which each subject performs

(Chapters 3 and 4 in [39]). Thus, with two tasks, half of the subjects will perform the

first task first, while the other half will perform the second task first. With counter-

balancing, the results are equally affected by learning transferred from the first task

to the second and from the second task to the first, avoiding ordering bias. However,

this approach, when used with problem solving, will not avoid the issues already

described. Namely, the results from the tasks performed second may be meaningless.

Another method to counter the carry-over effects in a study is to allow for a sub-

stantial amount of time to pass between the performance of tasks [29]. This method

was used in the initial study of DES problem solving in order to facilitate forgetting

[32]. However, this method may lose effectiveness if subjects are asked to solve iden-

tical problems. Furthermore, due to expected difficulty in subject recruitment, it was

not possible to plan for experimental design which calls for a long-term commitment

from the subjects.

As a result of the above considerations, the design of the evaluation study needed

to be more complex. It became obvious that it would not make sense to ask each

participant to solve the same DES problem under the two conditions (classical and

template design). Instead, two different DES problems were designed.

The particular DES problems used in the study were influenced by two factors.

First, it was important to reduce the impact of the cognitive load when solving a

problem. Second, the problems had to be solvable in a short amount of time. The

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 104

cognitive effort in solving the problems had to be reduced because the goal is to

evaluate the usability of the template design methodology, and a big cognitive effort

component can “overpower” the effects of any specific interface. In other words, it

has to be “obvious” how to solve the problems so that subjects do not spend too

much time deliberating on the essence of the solution, with potentially unpredictable

impact on the collected metrics. Furthermore, the problems had to be short in order

to increase the likelihood of recruiting subjects. Our goal was to keep the total time

for each task under 30 minutes. After investigation of existing DES toy problems

(e.g., [10, 94]) and using the experience from the study of DES problem solving (in

[32]) it became apparent that such problems are cognitively too demanding for our

purposes and/or take too long to model and solve. The natural approach, then, was

to design problems where a part of the solution is already modelled. The subjects

only need to modify a part and add some extensions. Not only are such problems

fast to solve, but also significantly reduce the cognitive effort needed for the problem

solving. An additional, and important, benefit which comes with this type of problem

is that they lend themselves well for the study of the template design methodology.

First, the preliminary study of the proposed methodology (described in Section 5.2)

showed that it is suitable for prototyping (i.e., experimenting with and modifying

solutions). Second, the advantage of using templates can be demonstrated if the

solution calls for the replication of some part of the provided partial model. It must

be noted that selecting partially-solved problems for the experiment in essence favors

the template design methodology. In our opinion, however, this is not an issue as

our goal is to evaluate the proposed methodology for problems where its application

makes sense. Furthermore, we conjecture that many of the real DES problems do not

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 105

require modelling from scratch.

The problems designed for the evaluation are shown in Appendices A.2 and A.3.

The first problem describes an electronics factory (the “factory problem”) and the

second one describes a manager of network devices (the “spooler problem”). Both

problems use simple and concrete language in order to reduce the cognitive load

needed to understand them. The problems come from different areas of automation

(manufacturing and network management) and the control solutions are different.

Thus, the amount of leaning which can be transferred between the problems is re-

duced. However, both problems require roughly the same number and type of actions

in order to solve them. Thus, the performance when solving the two problems using

the same methodology should be comparable.

After the two problems were designed, four potential conditions emerged:

• Factory problem, classical approach.

• Factory problem, template design approach.

• Spooler problem, classical approach.

• Spooler problem, template design approach.

Each subject only had to complete two tasks, one with the classical approach and one

with the template design approach. The order of the two approaches was randomized

and balanced. Similarly, one of the tasks had to involve solving the factory problem,

while the other one had to involve solving the spooler problem. Again, the order of

the two problems was randomized and balanced. Thus, each subject started with

one of the four tasks listed above, while their second task was the complementary

task from the list. This experimental setup is called mixed design (Chapter 12 in

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 106

[27]). A part of the testing condition is assigned within-subjects, i.e., each subject

used both the classical and the template design approaches. The other part of the

testing condition is assigned between-subjects, i.e., each subject solved the factory

problem using either the classical approach or the template design approach (and,

consequently, they used the complementary approach for the spooler problem).

The wording of the problems for both approaches was identical. However, the

subjects under the template design condition had a potential advantage in that the

partial model (template design) they received also serves as a conceptual diagram of

the existing solution. To compensate for this advantage, such a conceptual diagram,

in printed form, was included with the problem description for the classical approach

conditions (as seen in Appendices A.2 and A.3).

6.1.2 Metrics

There are many aspects of usability which can be measured. The three main cat-

egories of measures are efficiency, effectiveness, and satisfaction [42]. Furthermore,

there are objective (physically measurable) aspects and subjective (experiential) as-

pects of usability. The method of evaluation which was chosen for this study was

greatly influenced by the book Measuring the User Experience [84]. The authors not

only describe different methods of evaluation but also discuss the applicability of the

methods based on the professional experience of the authors. For our evaluation, the

following measures of usability were selected:

• Rate of task completion,

• Time for task completion,

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 107

• Error rate,

• Subjective evaluation of the experience and

• the System Usability Scale.

Rate of task completion This basic measure of effectiveness expresses the pro-

portion of subjects who managed to complete a given task. In this case, the rate of

completion is compared for tasks involving the classical approach and tasks involving

the template design approach. There is no limit on how long subjects can work on

a task, thus a task is considered incomplete (or failed) only if the subject announces

that they wish to give up solving the task. It is expected that, due to the simplicity

of the tasks, very few tasks, if any, will be incomplete.

Time for task completion The time for task completion is another basic measure

of the usability of a system, more specifically, of its time efficiency [84]. It is assumed

that if the same task is performed using two methods (or systems, interfaces, etc.),

the method where the task is completed faster is more efficient. In this case, the speed

of task completion is compared for tasks involving the classical approach and tasks

involving the template design approach. The timing only of tasks which are completed

is included. In order to allow a more detailed investigation of the performance of

subjects, two time intervals are measured: time to supervisor computation and time

to completion. The time to supervisor computation is defined as the length of time

since starting work until the supervisor computation algorithm is invoked (locally

or globally) for the first time. The time to completion is the length of time since

starting work until announcing completion of the task. If the supervisor computation

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 108

algorithm is never invoked, the two times are identical. Why does it make sense to

collect these two times? From previous observations (e.g., in [32]), the first invocation

of the supervisor computation algorithm is roughly the time when a subject transitions

from the “modelling” stage of problem solving to the “verification” stage. Recording

this time together with the total time for task completion allows for a more granular

investigation of the task performance.

Error rate The error rate, or how many errors subjects make during the execution

of a task, is another commonly used metric in usability testing [84]. It is assumed

that a higher number of errors corresponds to a less effective, more difficult-to-use

system. In this case, the error rates observed in the classical approach tasks and

the template design tasks are compared. Error rate information is collected only

for complete tasks, where the subject did not give up. Unlike the first study of DES

problem solving, [32], subjects produce complete solutions for the problems used in the

evaluation. Furthermore, since the problems are very simple, much smaller variation

in the potential acceptable solutions are expected. Thus, for the purposes of this

evaluation, it is not necessary to use techniques similar to the counting of perceived

mistakes employed in the initial study [32]. It is possible to examine the models

and supervisory solutions obtained from the subjects and compare them with the

expected solutions. As practice has shown, however, it is always necessary to apply

a degree of lenience towards the “correctness” of solutions as there can be multiple

interpretations of the same textual description of a problem. For the purposes of this

evaluation, the following errors rubric was developed.

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 109

Model of newly introduced plant component (same as existing models)

correct event set
the model contains the correct number
of events, with the correct controllability
property

correct model dynamics
the FSA model generates the correct event
sequences

Modified model of existing plant component (under valid interpretation)

correct event set
the model contains the correct number
of events, with the correct controllability
property

correct model dynamics
the FSA model generates the correct event
sequences

Newly introduced control specification (under valid interpretation)

correct model dynamics

the FSA model generates the desired event
sequences; the new specification may be in-
troduced as a separate model, or incorpo-
rated into the existing specification model

correct synchronization

the specification is synchronized correctly
with the plant through the use of events; in
the classical approach, the event names in
the plant and specification models have to
be identical and in the case of the template
design approach, the correct events have to
be linked

Supervisory solution

correct inputs

the correct models (plant and specifica-
tion) are used as inputs to the supervisor
computation algorithm, even if the models
themselves are not correct

valid approach

the computed supervisory solution will en-
force the desired control, given that the in-
put models are correct; in the case of mod-
ular supervision (with local supervisors),
the combined operation of all supervisors
must be equivalent to the operation of the
optimal centralized supervisor

For each article from the rubric, one penalty point is added to the score of a solution

if it does not satisfy the given article. Overall, a solution can receive a maximum

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 110

of eight penalty points. As both problems developed for this evaluation, the factory

and spooler problems, have the same structure and call for the same type of problem

solving steps, the rubric can be applied to both of them. Similarly, the rubric can

be applied uniformly to solutions with both the classical and the template design

approaches. A template design approach is only a higher-level wrapper for the same

basic solution elements. The low-level models and the computation algorithms are

identical to the classical approach.

Subjective evaluation of the experience As discussed in [18, 84], many aspects,

especially the subjective experience of users, can be investigated through the admin-

istration of questionnaires. The selection of questions for such questionnaires greatly

depends on what information is of interest. Based on previous experience with DES

problem solving (e.g., in [32]), we decided to focus on a few aspects which could help

compare the template design methodology with the classical approach. The most

important aspects were the following:

• user confidence and

• subjective learnability.

As discovered in the initial study of problem solving and as other researchers point

out [93], there is significant lack of transparency in the automatically generated super-

visory solutions to DES problems. This leads to the lack of confidence by the users in

the solutions they obtain. Thus, it is of interest to see how the proposed methodology

compares to the classical approach in terms of confidence. Another important aspect

of usability is the learnability of a system, or how fast a user can learn to operate the

system. Learnability requires a longitudinal study, where the performance of users

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 111

is studied over time [18, 84]. As the limitations of this evaluation does not allow for

such a study, we decided to instead collect information about the subjective opinion

of the subjects on their experience with learning the system. It is important to keep

in mind, however, that the subjective perception of learnability does not necessarily

correlate to the objective measure [42]. Information about confidence and subjective

learnability was collected by asking users to make selections from a Likert-style scale

from one to five [53]. Likert-style scales allow the ordinal comparison of hard to

quantify data (such as “liking”), however, they do not provide a deeper insight into

the experiences of users. Thus, we also included open-ended questions where sub-

jects could write what was easy and difficult for them when completing a task with

a given methodology. In order to collect data immediately after the experience (as

recommended in [84]), two questionnaires were administered to every subject—one

after each task completed by the subject—and each questionnaire asks for feedback

related to the given task. The questionnaire administered after the second (and last)

task, also asks the subject directly about their personal preference of DES problem

solving method. Finally, the second questionnaire contains an open-ended question

where the subject is encouraged to describe what they see as the greatest contribu-

tion of the template design methodology. This information allows a comparison of

the envisioned advantages of the methodology and the perceived advantages by the

users. The two questionnaires can be seen in Appendix B.

System Usability Scale The overall subjective usability evaluation of systems

is a challenging task and many questionnaires have been developed to collect such

data. These include Computer System Usability Questionnaire, Questionnaire for

User Interface Satisfaction, System Usability Scale, etc [84]. The use of standardized

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 112

questionnaires is strongly advocated by Hornbæk, [42]. In our evaluation we also

wanted to use a standardized questionnaire in order to compare the overall usability

of the TD plugin to that of established numbers. Furthermore, it was necessary to also

choose a short and simple questionnaire to keep the time commitment of subjects low.

The System Usability Scale (SUS) [7], satisfied both conditions. The questionnaire

contains only ten questions which are answered using a Likert-style scale. Despite its

simplicity, the SUS correlates well with other measures of usability [85]. Furthermore,

the SUS has been used for the evaluation of many software systems, thus standardized

scores have been accumulated [84, 79].

6.1.3 Subjects and experimental procedure

For this experiment, in total twelve subjects were recruited. All subjects had knowl-

edge of DES control theory through taking a graduate-level course on the topic. All

subjects were administered a preliminary questionnaire, asking about their experi-

ence with DES software in general and IDES in particular. The data is tabulated in

Table 6.1. As can be seen, the majority of subjects had some experience with DES

software (e.g., IDES), however, very few had much experience with template design.

Unfortunately, as explained earlier, it was not feasible to design a longitudinal study

where subjects are asked to become experts on template design before evaluating the

tool. In order to mitigate, as much as possible, this lack of experience, the experi-

mental procedure was designed to introduce the subjects to the template design in a

short time-frame.

Before the beginning of the study, the subjects are asked to complete two tutorials

available online. Both tutorials use a version of the popular “Transfer line” problem

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 113

Engineering Knowledge of Experience using
Subject background DES theory Any DES software IDES IDES+TD plugin

A 3 5 4 4 2

B 5 5 5 2 2

C 5 3 4 5 1

D 4 4 4 4 3

E 5 4 3 3 3

F 2 5 5 5 3

G 5 4 4 2 2

H 1 4 5 5 5

I 5 5 5 5 2

J 5 5 5 1 1

K 5 5 3 3 2

L 5 5 4 2 2

Table 6.1: Self-reported background information about the subjects. The scale used
is from one (very little) to five (very much).

[94] to teach how to use IDES (first tutorial) and how to use the TD plugin in IDES

(second tutorial). Each tutorial was designed to take not more than one hour and

subjects can complete these tutorials at their leisure.

When the subject arrives for the study, they are first asked to solve a simple,

but somewhat linguistically ambiguous DES problem (reproduced in Appendix A.1),

using both the classical and the template design approaches. The two solutions

normally take less than forty-five minutes to produce. The subject is encouraged to

seek consultations with the experiment conductor if they experience problems or have

questions. The tutorials are also available for reference. The goals of this practice

problem are the following:

• The subject is given a chance to learn IDES and the TD plugin in case they

failed to complete the tutorials.

• The subject is reminded how to use IDES and the TD plugin immediately before

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 114

the test.

• The subject can interact with the conductor to clarify any questions or misun-

derstandings they have about the software before the test.

• The subject’s mind is stimulated to solve a DES problem which is more chal-

lenging than the real problems in the study. Thus, the first problem in the

study will not require a “cold start” of the DES problem-solving skills of the

subject. In a sense, the practice problem serves a the stimulus which primes the

brain to “activate” the learned structures for DES problem-solving activities.

After the practice problem, there is a short break (about ten to fifteen minutes)

and then the subject is asked to complete the first task of the experiment. Their

performance is timed and the models they produce are retained for analysis of the

error rate. The subject is asked to complete the first feedback questionnaire and,

if the first task involved the template design methodology, they are also asked to

complete the SUS questionnaire.

After the first task, there is another break which lasts ten to fifteen minutes. The

subject then is asked to complete the second task for the experiment, where their

performance is timed and the models they produce are retained. After completing

the task, the subject fills out the second feedback questionnaire and, if the second

task involved the template design methodology, they are also asked to complete the

SUS questionnaire. With that, the participation of the subject ends.

6.1.4 Hypotheses

The hypotheses tested by this evaluation are the following:

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 115

• The total time for task completion is shorter using the template design method-

ology in comparison to the classical approach.

• The time for modelling during a task is shorter using the template design

methodology in comparison to the classical approach.

• Fewer errors are made using the template design methodology in comparison to

the classical approach.

• The template design methodology results in higher confidence in the models

users produce, in comparison to the classical approach.

• The template design methodology results in lower confidence in the supervisory

solution users obtain, in comparison to the classical approach.

• The template design methodology is (experientially) easier to use in comparison

to the classical approach.

• The template design methodology is (experientially) easier to learn in compar-

ison to the classical approach.

• Users have preference for the template design methodology over the classical

approach.

• The average SUS score for the TD plugin is not lower than the average SUS

score reported in the survey [84, 79].

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 116

6.2 Results

Data from all twelve subjects were collected. Before the start of analysis, it was

necessary to identify outliers in the data as these can have marked detrimental impact

on the power of statistical tests [39, 66]. It is common to identify outliers by examining

the distance of data points from the mean in terms of standard deviation units, i.e.,

the z-scores of data points. If a data point is too far from the mean, i.e., the z-score

is too large, it is considered an outlier. Commonly, a cutoff level of z = 3 is used [66].

However, in [87] the authors discuss the impact of different cutoff levels for data of

small sample size. When a non-recursive cutoff procedure is used, for sample size of

twelve, a cutoff level of z = 2.246 is recommended.

The identification procedure revealed outliers in the data for two subjects. One of

the subjects spent a relatively long time completing their solution using the classical

approach, with z = 2.284 > 2.246. Their time for modelling under the classical

approach condition was also relatively long, with z = 1.931. At the end of their

participation, the subject commented that they were very slow because they were

not very comfortable with the DES theory required for the experiment, and that

their performance was not slowed down by the software. The other subject spent

a relatively long time completing their solution using the template design approach,

with z = 2.476 > 2.246. This subject misinterpreted the factory problem. They

assumed that robots 2 and 3 must not operate concurrently and struggled to find

a satisfactory solution. The solution hinted at in the problem description does not

guarantee the lack of concurrent operation of these robots. The subject was trying

to accommodate the additional requirement within the expected solution.

There are three options for what to do with outliers in data [39, 66]:

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 117

• transform the data,

• recode the outliers, or

• remove the outliers.

Transformation of the data means that the value of each data point is transformed

using a function, such as square root, logarithm, or inversion. The rationale for such

transformations is that they can “pull in” outliers closer to the mean. However,

transformations have the negative effect of changing the relative distances between

data points, i.e., may effectively convert ratio variables into ordinal variables where

the degree of effect can no longer be quantified. Recoding of outliers consists of

changing the value of each outlier to the value of the closest non-outlier. This is a

simple procedure, however, its applicability in within-subject designs seems dubious as

the performances under different conditions are related and the independent recoding

of only one performance will alter the nature of the relation. It is then difficult to

determine which data point is “closest” as sets of related data points have to be

compared for each subject. The removal of outliers is the simplest procedure, and the

most applicable to complex experimental designs. When the sample size is not very

small, it improves the power of the statistical tests as the main effects become more

pronounced.

In the discussion that follows, only the data from the ten subjects without outlier

data points are considered.

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 118

6.2.1 Rate of task completion

The rate of task completion was 100% for all subjects for all tasks. That is, no

subject announced that they had given up solving a task and, furthermore, all subjects

reported in the questionnaires that they completed the solutions to their satisfaction.

6.2.2 Time for task completion

As discussed in Section 6.1.2, two separate measurements were collected: time to

supervisor computation and time to completion. The times for different subjects are

shown in Table 6.2. Subject I was the only subject who was faster using the classical

approach. They explained that they had extensive experience using the IDES software

without the TD plugin, while the template design interface was very new to them.

In order to assess the difference between means and to analyse the interaction

of the conditions, the mixed factorial (one within-subjects, one between-subjects)

ANOVA was employed. One of the assumptions of ANOVA is that the data are

normally distributed [27]. Using the Shapiro-Wilk test of normality [70], there is

significant probability that, under the classical approach condition, the values for the

time to supervisor computation and the total time are not sampled from a normal

distribution. However, no sufficient evidence against normality is found for the values

under the template design approach. Given that both processes (DES problem solving

using the classical approach and using template design) are inherently similar, and

given the general robustness of the ANOVA test under violations of the normality

assumption [26], we decided that this test is indeed applicable in our case. Last but

not least, it seems that a distribution-free (non-parametric) test is not available for

mixed-design experiments (e.g., no test is suggested in [27], [39] and various other

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 119

Problem in Classical Template design Difference
Subject TD condition Model Total Model Total Model Total

A Spooler 649 809 189 209 460 600
B Spooler 541 788 261 480 280 308
C Factory 672 726 444 511 228 215
D Factory 615 935 446 545 169 390
E Factory 754 834 506 579 248 255
F Spooler 676 840 488 692 188 148
G Spooler 1031 2035 590 708 441 1327
H Spooler 795 819 660 735 135 84
I Factory 426 582 782 851 -356 -269
J Spooler 1483 1486 1263 1267 220 219

Mean 764.2 985.4 562.9 657.7 201.3 327.7
Std 299.06 438.01 301.09 277.21 223.61 415.61

Table 6.2: Times taken by subjects (in seconds): time to supervisor computation
(Model) and total time (Total), under the classical approach condition (Classical)
and the template design condition (Template design). The second column shows
which problem was administered under the template design condition (the comple-
mentary problem was administered under the classical approach condition). The
last two columns show the differences between the times for the two conditions:
Difference-Model = Classical-Model − TemplateDesign-Model ; Difference-Total =
Classical-Total − TemplateDesign-Total . Positive differences indicate shorter time
under the template design condition. The mean and standard deviation for each
column is displayed at the bottom. The data are sorted according to the total time
under the template design condition.

sources).

The results of the mixed factorial (one within-subjects, one between-subjects)

ANOVA test are summarized in Tables 6.3 and 6.4. In the tables, of interest are the

rows labelled ‘Problem’, ‘Method’ and ‘Method’ × ‘Problem’ and the columns labelled

p and η2. The row labelled ‘Problem’ describes the effect on the data due to which

problem was assigned for the template design condition (factory or spooler). The row

labelled ‘Method’ describes the effect due to the problem solving approach (classical

or template design). Finally, the row labelled ‘Method’ × ‘Problem’ describes the

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 120

Source SS df MS F p η2

Between-subjects
‘Problem’ 91687.408 1 91687.408 0.562 0.4748 0.050

Subjects within groups 1304124.042 8 163015.505

Within-subjects
‘Method’ 202608.450 1 202608.450 9.563 0.0148 0.111

‘Method’ × ‘Problem’ 55513.008 1 55513.008 2.620 0.1442 0.030
‘Method’ × Subjects 169496.042 8 21187.005

within groups

Total 1823428.950 19

Table 6.3: Results of the mixed factorial (one within-subjects, one between-subjects)
ANOVA test of the time to supervisor computation. The (between-subjects) ‘Prob-
lem’ factor denotes which problem, factory or spooler, was solved under the template
design condition (the corresponding complementary problem was solved under the
classical approach condition). The (within-subjects) ‘Method’ factor denotes the
used approach, classical or template design.

effect due to the interaction between problem and approach. The p value gives the

probability that the measured difference is due to chance and the η2 value gives the

effect size, i.e., how much of the variability in the data is due to the given effect, or

what is the impact of the effect. According to [12], if 0.01 ≤ η2 < 0.06 the effect

is small, if 0.06 ≤ η2 < 0.14 there is medium effect, and large effect is observed if

0.14 < η2. A more complete description of the ANOVA table of results can be found

for example in [39].

The results shown in Tables 6.3 and 6.4 allow us to make the following conclusions.

• There is significant difference between the times to supervisor computation (p =

0.0148 < 0.05) due to the effect of the problem solving approach. Namely, the

time to supervisor computation can be expected to be shorter when the template

design is used. The size of this effect is medium in comparison to all variability

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 121

Source SS df MS F p η2

Between-subjects
‘Problem’ 212268.408 1 212268.408 1.189 0.3074 0.072

Subjects within groups 1428730.042 8 178591.255

Within-subjects
‘Method’ 536936.450 1 536936.450 6.418 0.0351 0.182

‘Method’ × ‘Problem’ 107940.008 1 107940.008 1.290 0.2889 0.037
‘Method’ × Subjects 669336.042 8 83667.005

within groups

Total 2955210.950 19

Table 6.4: Results of the mixed factorial (one within-subjects, one between-subjects)
ANOVA test of the time to completion. The (between-subjects) ‘Problem’ factor
denotes which problem, factory or spooler, was solved under the template design
condition (the corresponding complementary problem was solved under the classi-
cal approach condition). The (within-subjects) ‘Method’ factor denotes the used
approach, classical or template design.

in the data (η2 = 0.111).

• There is significant difference between the times to completion (p = 0.0351 <

0.05) due to the effect of the problem solving approach. Namely, the time to

completion can be expected to be shorter when the template design is used. The

size of this effect is large in comparison to all variability in the data (η2 = 0.182).

• The variability in the data due to the problem assignment, i.e., which problem

was solved using which approach, does not reach significant levels (p > 0.05 for

both the time to supervisor computation and the time to completion). Thus,

it is not possible to reject the hypothesis that the observed difference is due

to chance. In other words, it seems that the measured differences in perfor-

mance were not affected by which problem was assigned for the template design

condition (and, consequently, for the classical approach condition).

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 122

• The variability in the data due to the interaction between problem assignment

and approach (row ‘Method’ × ‘Problem’), does not reach significant levels (p >

0.05 for both the time to supervisor computation and the time to completion).

Thus, it is not possible to reject the hypothesis that the observed difference

is due to chance. In other words, it seems that the measured differences in

performance did not depend on which problem was solved.

6.2.3 Error rate

The solutions of each subject were examined and the error rates were computed using

the rubric from Section 6.1.2. Each solution could receive from zero to eight points,

where zero points denotes no errors in the solution according to the rubric and eight

is the maximal number of penalty points. The results are summarized in Table 6.5.

Error rate
Subject Classical approach Template design

A 3 1
B 1 0
C 0 0
D 0 0
E 0 1
F 0 0
G 1 0
H 0 0
I 0 1
J 3 1

Sum 8 4

Table 6.5: The error rates for the solutions of the subjects. Zero points denotes no
errors; each solution can collect a maximum of eight penalty points.

It is important to note that the nature of this metric is ordinal. In other words, the

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 123

error rate can only be used to order the solutions according to the selected measure of

correctness. The amount of difference in correctness between equidistant levels of the

measure need not be constant, e.g., the difference in correctness between solutions

with error rates 2 and 3 need not be the same as the difference in correctness between

solutions with error rates 0 and 1. The ordinality of the data precludes the use of

parametric statistical tests such as the t-test. Thus, we used the Wilcoxon signed-rank

test, a distribution-free test recommended for within-subjects data [27].

The results of the Wilcoxon signed-rank test are T (6) = 5.00, p > 0.05. Here,

the p value gives the probability that the observed difference in the data is due to

chance. As this probability is not significantly low, it seems that the use of different

approaches to DES problem solving did not produce an observable effect.

6.2.4 Subjective evaluation of the experience

The data from the questionnaires in Appendix B are summarized in Table 6.6. The

table does not include the answers to the open-ended questions. All subjects reported

that they completed both solutions to their satisfaction. As well, all subjects reported

that they preferred the template design methodology over the classical approach.

The Wilcoxon signed-rank test reveals that there is significant difference (p <

0.05) in the answers only to the question “How easy was it to apply the problem

solving methodology which you used?”. Furthermore, the effect of the difference in

approaches on the ease of application is large, as measured by r. According to [12],

if 0.1 ≤ r < 0.3 the effect is small, if 0.3 ≤ r < 0.5 there is medium effect, and large

effect is observed if 0.5 < r.

The open-ended questions cannot be analysed directly using similar statistical

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 124

Confidence Confidence Easy to learn Easy to apply
in model in supervisor approach approach

Subject C TD C TD C TD C TD

A 3 4 2 4 5 5 2 5
B 4 4 4 4 5 5 4 5
C 5 5 5 5 4 4 3 4
D 5 4 5 4 4 5 4 5
E 3 3 5 5 5 5 4 4
F 4 5 4 5 5 4 4 5
G 3 5 5 5 4 5 5 5
H 4 4 4 4 4 4 3 5
I 4 4 4 4 4 4 3 5
J 4 4 4 4 4 5 2 5

Sum 39 42 42 44 44 46 34 48
Wilcoxon signed-rank test

T(4)=2.00 T(3)=1.50 T(4)=2.50 T(8)=0
p > 0.05 p > 0.05 p > 0.05 p = 0.0039

r = 0.5949

Table 6.6: The answers of the subjects to the scaled questions from the questionnaires
in Appendix B, after the classical approach condition (C) and the template design
condition (TD). The scale used is from one (very little) to five (very much).

tools. However, we aggregated similar responses into corresponding categories, in

order to present the answers in a compact form. The summary of responses is shown

in Table 6.7. The relative difference included in the table gives an idea of which

features of the TD plugin were rated relatively favorably (high value) and relatively

unfavorably (low value). If the Wilcoxon signed-rank test is used to analyse the

responses, the difference of ease for the two approaches does not reach a significant

level (p > 0.05). Thus, the data can be used only as indicators. According to the

subjects, the biggest advantages of template design are the way event synchronization

and specification self-loops are treated, the creation of new models, copying of models,

and the fact that the design provides a better overview of the situation. The single,

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 125

Classical Template design Relative difference
Category Easy, Difficult Easy, Difficult (in favor of TD)

Call operations EEEE DD -6
Copy models D EEEEED 5

Create supervisors EE EE 0
Event synchronization DDDDD EE 7

Find errors D D 0
Model new models D EEEEE 6

Model models E -1
Modify models E EE 1

Overview of the situation DD EEE 5
Self-loops DDDDD EE 7

User interface ED ED 0

Wilcoxon signed-rank test
T(8)=7.00
p = 0.0742

Table 6.7: Aggregated responses to the two open-ended questions from the ques-
tionnaires in Appendix B. For each response to what was difficult, a ‘D’ is added
to the corresponding categories. For each response to what was easy, an ‘E’ is
added to the corresponding categories. In the last column, the relative difference
in favor of the template design approach is computed: #(E, Template-desing) −
#(D, Template-design)−#(E, Classical)+#(D, Classical), where #(X,Y) gives the
count of the letter X under the Y condition.

big disadvantage of the TD plugin is that subjects found it difficult to call or interpret

the new DES operations.

Finally, the responses of the subjects regarding the contribution of the template

design methodology were aggregated under a number of features derived from the

answers. The summary is shown in Table 6.8. It can be seen that the most important

contribution (according to number of subjects who mention it) is the introduction

of high-level structure to the overall model. The other features valued by most sub-

jects are the automatic handling of self-loops in specifications and the ability to use

templates. Generic features such as automation, speed of modelling, reduced risk of

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 126

Feature Count

High-level structure 7
Handling of self-loops in specifications 5

Templates 3
Automation of modelling 2

Modelling is less error-prone 2
Speed of modelling 2

Convenient user interface 2

Table 6.8: Counts of how many subjects mentioned a given feature as a contribution
of the template design methodology.

making errors and user interface are not referred to as frequently.

6.2.5 System Usability Scale

Each subject was administered the System Usability Scale questionnaire after com-

pleting the task under the template design approach. The results are summarized in

Table 6.9.

Subject SUS score

A 85
B 95
C 92.5
D 77.5
E 82.5
F 92.5
G 92.5
H 65
I 82.5
J 92.5

Mean 85.75
Std 9.36

Table 6.9: SUS scores for IDES with the TD plugin.

The SUS results were compared with the data from [79] (mean=66.41, std=12.97)

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 127

using the two-tailed t-test with the Welch adjustment for unequal variances [91]. The

difference in means is significant, t(14.46) = 5.315, p = 0.0006 < 0.05, r = 0.813.

Thus, it is possible to conclude that the usability of IDES with the TD plugin, as

measured via SUS, is higher than the average usability in the various software packages

from the survey [79].

6.3 Discussion and Conclusions

The collected experimental data and its analysis allowed us to evaluate more rigor-

ously the usability of the implementation of the template design methodology. Going

back to the hypotheses from Section 6.1.4, we can now say the following.

• There is significant evidence that the total time for task completion is shorter

using the template design methodology in comparison to the classical approach.

Furthermore, the observed effect is large.

• There is significant evidence that the time for modelling during a task (i.e., “time

to supervisor”) is shorter using the template design methodology in comparison

to the classical approach. The observed effect is of medium size.

• There is no significant evidence that fewer errors are made using the template

design methodology in comparison to the classical approach.

• There is no significant evidence that the template design methodology results

in higher confidence in the models users produce, in comparison to the classical

approach.

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 128

• There is no significant evidence that the template design methodology results

in lower confidence in the supervisory solution users obtain, in comparison to

the classical approach.

• There is significant evidence that the template design methodology is (experi-

entially) easier to use in comparison to the classical approach. The observed

effect is large.

• There is no significant evidence that the template design methodology is (ex-

perientially) easier to learn in comparison to the classical approach.

• All subjects in the study showed preference for the template design methodology

over the classical approach.

• The average SUS score for the TD plugin is not lower than the average SUS

score reported in the survey [84, 79]. Furthermore, there is significant evidence

that the subjects rated the usability (as measured with SUS) of IDES with

the TD plugin higher than the average usability of the pool of software in the

survey.

Anecdotal analysis of the errors which subjects committed reveals that the major-

ity of mistakes were committed while modifying the existing models (e.g., the model

for robot 1 in the factory problem)—7 out of 12. Similarly, most mistakes involved

setting incorrect controllability—6 out of 12. In the experience of the experiment

conductor, the subjects appeared to forget about setting controllability, rather than

explicitly making the wrong choice. Two of the errors committed involved designing

specifications to alternate robots 2 and 3 in the factory problem, rather than robots 1

and 3. Again, this points to lack of attention to the problem description, rather than

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 129

an inherent lack of understanding of how to solve the problem. It is possible to expect

that all the errors discussed here will have similar impact regardless of the problem

solving approach used. Thus, it should not be a surprise that no significant difference

in error rate was found between the two approaches. A different and more focused

experiment may be needed to reveal any effects of the approaches on the error rate.

As mentioned in the beginning of this chapter, one of the major problems re-

garding the setup of the experiment was the lack of experience of the subjects. As

indicated, the vast majority of subjects had very little prior experience with the tem-

plate design methodology, while they had relatively more experience with other DES

software and with IDES without the TD plugin. Put another way, subjects were more

experienced with the classical approach than with the template design methodology.

In light of this, it may not be possible to compare directly the scores of experiential

learnability reported by the subjects for the two approaches. The same issue has to

be considered also for the other measures. The better performances recorded and the

higher ratings given under the template design condition become much more impres-

sive if one considers that many users had only a few hours of experience with the TD

plugin, solving one or two problems, prior to their participation in the study.

In this evaluation, the data from two subjects were not considered because the

times they took to produce their solutions were judged outliers. It is worth discussing

in more detail the activity of one of these subjects. This subject was assigned the

factory problem under the template design condition. As already mentioned, they

decided that it was not sufficient to guarantee the alternation of the operation of

robots 1 and 2 and robots 1 and 3. In addition to this, the subject thought that it

was necessary to prevent the concurrent operation of robots 2 and 3 since they would

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 130

conflict when placing chips on the same circuit board. This is clearly a misinterpre-

tation of the problem description where it is explicit that “it is sufficient to add one

more coordinator to guarantee that the outputs of robots 1 and 3 alternate as well”.

The subject spent much time and effort trying to figure out how to accomplish the

additional goal by modifying the two coordinators. This issue was resolved when the

subject realized that the template library available to them contains the “MUTEX”

template (a template which can be used to specify mutual exclusion). This template

was included in the library because it is used in the spooler problem. The subject

quickly instantiated the template, connected it to the modules for robots 2 and 3

and, upon computing the supervisory solution, immediately achieved the goal they

had in mind. This development was not foreseen in the design of the study, and the

subject was not originally aware that such a template would be available to them. A

big motivating factor for the development of the template design methodology was to

allow the encapsulation of useful system or specification behavior, and enable the easy

reuse across projects. Even though the described incident could not be included in the

planned analysis of usability, we believe that it demonstrates clearly the envisioned

advantage of the proposed methodology.

In summary, it is possible to conclude that, according to this evaluation, the

overall usability of the template design implementation is good—as demonstrated

by the preference of the subjects, the rating of the experiential ease of use, and the

higher-than average SUS scores. We observed one objective advantage of the template

design methodology, that is, the increase of speed (both for task completion and for

modelling). The increase of speed does not seem to come at a cost to the users, i.e.,

there is no significant difference in the error rate, confidence in the solution, or the

CHAPTER 6. EVALUATION OF TEMPLATE DESIGN 131

experience of learning how to use it. This is in contrast to other attempts to design

software according to observations of problem solving, e.g., in [71] the authors record

improvement of the objective measures of performance, but the experiential ratings

the users report deteriorate.

In most of the aspects of usability measured for this evaluation, no significant

difference was found between the classical and template design approaches. However,

in all measures, on average there is at least a small advantage for the template design

methodology. Altogether, this is a indicator that the template design approach is a

better tool than the classical approach. Further experiments are needed to investigate

the advantages and disadvantages of the methodology. Most importantly, it is nec-

essary to investigate the (objective) learnability of the implementation, and compare

the performances of experts in both approaches.

Lastly, looking at the contributions of the template design methodology men-

tioned by the subjects, in Table 6.8, one can see that the subjects have recognized

features which correspond to the main goals of the methodology. Subjects mention

automation, robustness, speed, and convenience. Furthermore, as already hinted at in

Section 5.2 and [31], it seems that more subjects see value in the high-level structure

in the template design, rather than the availability of templates. As the problems

used for this study were very simple, the question remains open if under real applica-

tions templates will prove to be as beneficial as having a structured environment, or

will remain a convenience factor. The anecdotal evidence regarding the unexpected

use of the “MUTEX” template suggests that, indeed, the availability of templates

could be of more aid than demonstrated in this evaluation.

Chapter 7

Conclusions

This work described the research conducted in the quest for designing better DES

software. The exploratory observational study of solving DES control problems, [32],

served as a precursor. The think-aloud data collected from the subjects helped us

develop a list of recommendations on how to design and improve DES software. These

observations, together with other relevant research, led to the proposal of the template

design methodology for DES problem solving. This methodology does not require

the introduction of new control theory; it is rather a reinterpretation of the existing

modelling framework. Software supporting this methodology was implemented and

subsequently evaluated using twelve subjects. Significant improvements in the speed

of problem solving as well as positive evaluations by the subjects were observed. The

usability data do not show any drawbacks to applying the methodology. According

to the subjects, the biggest benefit of template design is the support of conceptual

modelling. There is some indication that the encapsulation of DES behavior, in

the form of templates, could also prove advantageous in certain circumstances. In

summary, we managed to accomplish the goals motivating this work. The insights

132

CHAPTER 7. CONCLUSIONS 133

gained from the observation of DES problem solving helped us design better DES

software. We believe that practitioners of DES supervisory control will benefit from

using the new methodology.

7.1 Other Lessons

Beyond the conclusions drawn explicitly in the previous chapters, we mention next a

few other lessons learned from this research.

The review of literature from the fields of both cognitive psychology and human-

computer interaction revealed that often usability research is conducted without suffi-

cient understanding of human cognitive processes, and without the rigor of psycholog-

ical research. Acquiring at least an overview of cognitive psychology research, e.g., by

reading Anderson’s book [2], might prove to be beneficial for HCI studies. Naturally,

usability research focuses predominantly on human behavior, however, knowledge of

the cognitive processes resulting in observed behavior will make it easier to predict the

impact of interface design decisions. On the other hand, we found it hard to establish

the link between theoretical research on cognition and its practical application, such

as the investigation of solving complex, ill-defined problems. The relevant research we

found tends to focus on the examination of very small aspects of cognition which do

not necessarily lead to a better understanding of the overall processes or experiences.

Authors normally do not discuss how the investigated cognitive processes manifest in

“real life”. Furthermore, many procedures employed in such research remain vaguely

described or seem applicable only within the particular setup of an experiment. For

example, most descriptions of the protocol analysis technique focus on how to con-

duct think-aloud studies, but are very brief on how to analyse the data afterwards.

CHAPTER 7. CONCLUSIONS 134

No standardized approach is discussed which could be useful for usability research.

On numerous occasions authors in usability have pointed out that observations of

the real users of a system are indispensable during the design of the system, e.g., [83].

During the interactions observed between subjects and the IDES software, we have

been repeatedly surprised by the innovative ways which subjects found to complete

their tasks. These observations both confirm the maxim that someone is bound

to make a mistake if it is possible (as all possible ways to interact with a product

actually get explored), and call for the design of software which gives the maximal

degree of freedom in the form of interaction (as the approaches of different users vary

markedly). We recommend that designers of software never forgo, if at all possible,

usability testing with real users.

The development of the IDES software, and the template design plugin, gave us

much experience with the design and architecture of software. With the risk of being

challenged, we will extol the virtues of simple interfaces between modules even if

such interfaces seem inadequate for every conceivable situation. Complex interfaces

not only become cumbersome; they offer more chances to make errors, they render

the programs hard to understand, and they are much more challenging to learn.

Historically, a similar lesson can be gained from the failures of CORBA [40]. We

believe that the flexibility of the interfaces may be improved with approaches such as

the object annotation mechanism in IDES (as detailed in Section 5.3.1), instead of

using complex interfaces. Indeed, the annotation mechanism may result in “messy”

programs, however, it increases the extensibility of software and inspires creativity.

Especially in research applications, such approaches should be promoted rather than

stifled in the pursuit of stability or security.

CHAPTER 7. CONCLUSIONS 135

7.2 Future Work

There are many limitations to the studies and analyses presented in this work. To

gain a better and more detailed understanding of the cognitive processes in DES

problem solving, it is necessary to conduct many more observational studies, focusing

on different aspects of the task. For example, in [32], the verification stage of problem

solving, i.e., when subjects make sure that their solutions are correct, was not explored

in depth. Similarly, our usability evaluation did not examine the learnability of the

template design implementation, nor did the experimental setup allow for discerning

if there is a difference in the error rate when using the new methodology. We believe

that a longitudinal study of template design would bear the most fruit, e.g., the

comparison between the template design and the classical approach in a semester-

long undergraduate project.

As pointed out in Section 4.2.3, the template design methodology can be improved

by the incorporation of a mechanism to parametrize templates. This is only one

specific way to extend the methodology. More generally, one can consider the fact

that the template design approach makes very few assumptions about the underlying

low-level framework (which, in our case, used finite-state automata). We believe

that it should not pose a problem to employ the approach using a different low-level

framework, e.g., that of Petri nets. In template design, it is only assumed that there

is a way to define discrete-event behavior formally (i.e., the models that underly the

module and channel entities in the design), and an algorithm to compute supervisory

control according to the channel specifications. It is conceivable that even mixed-

framework designs could be used where modules and channels may be modelled using

a variety of techniques. In order to enable the use of such approaches, it is necessary to

CHAPTER 7. CONCLUSIONS 136

develop the supervisory control algorithms which will act upon heterogeneous models.

Finally, the template design methodology addresses only some of the recommen-

dations stemming from the observational study on problem solving. To us, a number

of other recommendations seem equally important for the development of usable (and

useful) DES software. The key areas where we currently see deficiencies are the fol-

lowing:

• Tools for the verification of solutions. Better visualizations are needed, such as

specialized layout algorithms when the models are small, or means to explore

models of thousands of states. Better automation is needed, such as automated

string tracing or simulation environments that are oriented to DES control.

• Application of theoretical solutions. The ability to compute optimal supervi-

sors is worthless if one cannot use the results for some other purposes, e.g., for

publications, presentations, group work and, most importantly, the control of

systems. We are bewildered that for most DES software, obtaining the super-

visor in a form suitable for the control of real systems is non-trivial at best,

and not possible at all at worst. Here we should acknowledge that, unfortu-

nately, the template design implementation falls in the latter category. The

generation of output such as Programmable Logic Controller code has not been

implemented yet.

• Openness to and integration with other approaches to DES control. Most re-

search in DES supervisory control has been focused on the framework proposed

by Ramadge and Wonham [67]; however, observation of the work of subjects

reveals that the finites-state automaton is not always the most suitable type of

model for giving specifications or for supervision. The use of inequalities and

CHAPTER 7. CONCLUSIONS 137

temporal logic for specifications are among the alternatives which most easily

come to mind. Thinking further one can consider that, in the modern world,

systems often operate in dynamic and uncertain environments. It seems that

other approaches to control, such as online control [11], or stochastic control

[50] may be more suitable. Finally, there has been a staunch reluctance in

the supervisory control community to give programmatic control (i.e., where

the specifications are given in the form of an algorithm whose output is to be

determined at runtime) a place within the DES universe. Especially in online

control, at each step, small control programs can take advantage of up-to-date

data to make control decisions. Programmatic control can also employ heuristic

evaluations or machine learning algorithms. Naturally, accepting programmatic

control will undoubtedly render many theoretical results in DES inadequate or

inappropriate, as most of the theories assume static systems, precomputed con-

trol, or specifications from a restricted class of linguistic complexity (e.g., only

regular or context-free specifications). However, it is our belief that program-

matic control is unavoidable in practice, especially as the controllers in most

new equipment are in the form of embedded computers. Thus, programmatic

control has to be embraced and its theoretical implications investigated.

Looking at all the potential venues in which this work can be extended, we feel

most of all excited. There are countless ways in which to make DES theory more

applicable and useful, and only a few of these paths have been explored.

Bibliography

[1] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi. Supremica – a tool for
verification and synthesis of discrete event supervisors. In Proceedings of the
11th Mediterranean Conference on Control and Automation, Rhodos, Greece,
2003.

[2] J. R. Anderson. Cognitive Psychology and Its Implications. Worth Publishers,
New York, New York, USA, sixth edition, 2005.

[3] J. Banks, J. C. II, B. L. Nelson, and D. M. Nicol. Discrete-Event System Sim-
ulation. Pearson Prentice Hall, Upper Saddle River, NJ, USA, fourth edition,
2005.

[4] F. Basile and P. Chiacchio. On the implementation of supervised control of
discrete event systems. IEEE Transactions on Control Systems Technology,
15(4):725–739, 2007.

[5] G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming, 19(2):87–
152, 1992.

[6] B. A. Brandin, R. Malik, and P. Malik. Incremental verification and synthesis
of discrete-event systems guided by counter examples. IEEE Transactions on
Control Systems Technology, 12(3):387–401, May 2004.

[7] J. Brooke. Usability Evaluation in Industry, chapter SUS: a ‘quick and dirty’
usability scale, pages 189–194. Taylor and Francis, 1996.

[8] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An empirical com-
parison of pie vs. linear menus. In Proceedings of the ACM CHI Conference on
Human Factors in Computing Systems, pages 95–100, 1988.

[9] X.-R. Cao, G. Cohen, A. Giua, W. M. Wonham, and J. H. van Schuppen. Unity
in diversity, diversity in unity: Retrospective and prospective views on control of
discrete event systems. Discrete Event Dynamic Systems, 12(3):253–264, 2002.

138

BIBLIOGRAPHY 139

[10] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, second edition, 2007.

[11] S.-L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory
control of discrete event systems. IEEE Transactions on Automatic Control,
37(12):1921–1935, 1992.

[12] J. Cohen. Statistical power analysis for the behavioral sciences. Lawrence Erl-
baum Associates, second edition, 1988.

[13] L. Cosmides. The logic of social exchange: Has natural selection shaped how
humans reason? Studies with the Wason selection task. Cognition, 31:187–276,
1989.

[14] CTCT software. Department of Electrical and Computer Engineering, University
of Toronto, Canada. Available at http://www.control.toronto.edu/DES/.

[15] C. de Oliveira, J. E. R. Cury, and C. A. A. Kaestner. Discrete event systems
with guards. In Proceedings of the 11th IFAC Symposium on Information Control
Problems in Manufacturing, volume 1, pages 90–95, Salvador, Brazil, 2004.

[16] M. H. de Queiroz and J. E. R. Cury. Modular control of composed systems. In
Proceedings of the 2000 American Control Conference, volume 6, pages 4051–
4055, June 2000.

[17] M. H. de Queiroz and J. E. R. Cury. Synthesis and implementation of local
modular supervisory control for a manufacturing cell. In Proceedings of the 6th
International Workshop on Discrete Event Systems (WODES’02), pages 377–
382, Zaragoza, Spain, October 2002.

[18] A. J. Dix, J. E. Finlay, G. D. Abowd, and R. Beale. Human-Computer Interac-
tion. Prentice Hall Europe, second edition, 1998.

[19] K. Edlund, A. G. Michelsen, and K. Rudie. Supervisory control of flowlines by
modelling the legal language as inequalities. In Proceedings of the 8th Interna-
tional Workshop on Discrete Event Systems, pages 15–20, Ann Arbor, Michigan,
USA, 2006.

[20] G. Ekberg and B. H. Krogh. Programming discrete control systems using state
machine templates. In Proceedings of the 8th International Workshop on Discrete
Event Systems, pages 194–200, Ann Arbor, MI, USA, July 2006.

BIBLIOGRAPHY 140

[21] C. M. Enright and M. Barbeau. An evaluation of the TCT tool for the synthesis
of controllers of discrete event systems. In Canadian Conference on Electrical
and Computer Engineering, volume 1, pages 241–244, Vancouver, BC, Canada,
September 1993.

[22] K. A. Ericsson and H. A. Simon. Protocol Analysis. The MIT Press, Cambridge,
Massachusetts, USA, revised edition, 1993.

[23] M. Fabian and A. Hellgren. Desco – a tool for education and control of discrete
event systems. In Discrete Event Systems: Analysis and Control (Proceedings of
the 5th Workshop on Discrete Event Systems), pages 471–472, Ghent, Belgium,
August 2000.

[24] J. Flochová, R. Lipták, and P. Bachratý. An on line course for supervisory
control teaching. In Proceedings of the 6th IFAC Symposium on Advances in
Control Education, Oulu, Finland, June 2003.

[25] G. W. Furnas and B. B. Bederson. Space-scale diagrams: Understanding multi-
scale interfaces. In Proceedings of Human Factors in Computing Systems (CHI
95), pages 234–241, Denver, CO, USA, 1995.

[26] G. V. Glass, P. D. Peckham, and J. R. Sanders. Consequences of failure to meet
assumptions underlying the fixed effects analyses of variance and covariance.
Review of Educational Research, 42(3):237–288, 1972.

[27] J. A. Gliner and G. A. Morgan. Research methods in applied settings: an inte-
grated approach to design and analysis. Lawrence Erlbaum Associates, 2000.

[28] The Grail environment for supervisory control of discrete event systems. Depart-
ment of Automation and Systems, Federal University of Santa Catarina, Brazil.
Available at http://www.das.ufsc.br/~cury/grail.html.

[29] A. G. Greenwald. Within-subjects designs: To use or not to use? Psychological
Bulletin, 83(2):314–320, 1976.

[30] L. Grigorov. Hierarchical control of discrete-event systems. Survey pa-
per, School of Computing, Queen’s University, Canada, 2005. Available at
http://www.cs.queensu.ca/~grigorov/.

[31] L. Grigorov. Template design of discrete-event systems. Technical report 2007-
538, School of Computing, Queen’s University, Canada, 2007.

[32] L. Grigorov. Observations on solving discrete-event control problems: patterns
and strategies. Technical report 2009-558, School of Computing, Queen’s Uni-
versity, Canada, 2009.

BIBLIOGRAPHY 141

[33] L. Grigorov, J. E. R. Cury, and K. Rudie. Design of discrete-event systems
using templates. In Proceedings of the American Control Conference 2008, pages
499–504, Seattle, WA, USA, June 2008.

[34] L. Grigorov, J. E. R. Cury, K. Rudie, and S. Klinge. Template design and auto-
matic generation of controllers for industrial robots. In Proceedings of the 2008
ACM Symposium on Applied Computing, pages 1612–1613, Fortaleza, Ceará,
Brazil, March 2008.

[35] L. Grigorov and K. Rudie. Problem solving in control of discrete-event systems.
In Proceedings of the European Control Conference 2007, pages 5500–5507, Kos,
Greece, July 2007.

[36] L. G. Grigorov. Control of dynamic discrete-event systems. Master’s thesis,
School of Computing, Queen’s University, Kingston, Ontario, Canada, 2004.

[37] P. L. Guernic, T. Gautier, M. L. Borgne, and C. L. Maire. Programming real-
time applications with Signal. Proceedings of the IEEE, 79(9):1321–1336, 1991.

[38] R. Guindon. Knowledge exploited by experts during software system design.
International Journal of Man-Machine Studies, 33(3):279–304, 1990.

[39] S. A. Haslam and C. McGarty. Research Methods and Statistics in Psychology.
SAGE Publications, 2003.

[40] M. Henning. The rise and fall of CORBA. ACM Queue, 4(5):29–34, 2006.

[41] L. E. Holloway, X. Guan, R. Sundaravadivelu, and J. Ashley, Jr. Automated
synthesis and composition of taskblocks for control of manufacturing systems.
IEEE Transactions on Systems, Man, and Cybernetics: Part B, 30(5):696–712,
2000.

[42] K. Hornbæk. Current practice in measuring usability: Challenges to usability
studies and research. International Journal of Human-Computer Studies, 64:79–
102, 2006.

[43] IDES software. Department of Electrical and Computer Engineering, Queen’s
University, Canada.
Available at http://www.ece.queensu.ca/directory/faculty/Rudie.html.

[44] JavaScript programming language.
Documentation available at http://developer.mozilla.org/en/JavaScript.

BIBLIOGRAPHY 142

[45] P. N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Lan-
guage, Inference, and Consciousness. Harvard University Press, Cambridge,
Massachusetts, USA, 1983.

[46] P. N. Johnson-Laird. The shape of problems. In The Shape of Reason: Essays in
Honour of Paolo Legrenzi, pages 3–26. Psychology Press, New York, USA, 2005.

[47] P. N. Johnson-Laird, P. Legrenzi, V. Girotto, M. S. Legrenzi, and J.-P. Caverni.
Naive probability: A mental model theory of extensional reasoning. Psychological
Review, 106:62–88, 1999.

[48] P. N. Johnson-Laird, P. Legrenzi, and M. S. Legrenzi. Reasoning and a sense of
reality. British Journal of Psychology, 63:395–400, 1972.

[49] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event
Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1995.

[50] R. Kumar and V. K. Garg. Control of stochastic discrete event systems modeled
by probabilistic languages. IEEE Transactions on Automatic Control, 46(1):593–
606, 2001.

[51] R. J. Leduc. Hierarchical Interface-based Supervisory Control. PhD thesis, De-
partment of Electrical and Computer Engineering, University of Toronto, 2002.

[52] A. Lefford. The influence of emotional subject matter on logical reasoning. Jour-
nal of General Psychology, 34:127–151, 1946.

[53] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
140:1–55, 1932.

[54] F. Lin and H. Ying. Modeling and control of fuzzy discrete event systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 32(4):408–415, August
2002.

[55] E. Lucas. Récréations mathématiques, volume 3. Gauthier-Villars, Paris, France,
1883.

[56] A. S. Luchins and E. H. Luchins. Rigidity of Behavior: A Variational Approach
to the Effect of Einstellung. University of Oregon Books, Eugene, Oregon, USA,
1959.

[57] C. Ma and W. M. Wonham. Control of state tree structures. In Proceedings of
the 11th Mediterranean Conference on Control and Automation, Rhodes, Greece,
June 2003. Paper T4-005.

BIBLIOGRAPHY 143

[58] I. S. MacKenzie, A. Seller, and W. Buxton. A comparison of input devices
in elemental pointing and dragging tasks. In Proceedings of the ACM CHI’91
Conference on Human Factors in Computing Systems, pages 161–166, 1991.

[59] H. Marchand, P. Bournai, M. L. Borgne, and P. L. Guernic. Synthesis of discrete-
event controllers based on the signal environment. Discrete Event Dynamic Sys-
tems: Theory and Applications, 10(4):325–346, 2000.

[60] J. Metcalfe and D. Weibe. Intuition in insight and noninsight problem solving.
Memory and Cognition, 15:238–246, 1987.

[61] J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete Event Systems
Using Petri Nets. Kluwer Academic Publishers, 1998.

[62] I. B. Myers, M. H. McCaulley, N. L. Quenk, and A. L. Hammer. MBTI Man-
ual (A guide to the development and use of the Myers Briggs type indicator).
Consulting Psychologists Press, third edition, 1998.

[63] D. A. Norman. Some observations on mental models. In Mental Models, pages
7–14. Lawrence Erlbaum Associates, 1983.

[64] D. A. Norman. The Design of Everyday Things. Currency, New York, New York,
USA, 1990.

[65] A. F. Osborn. Applied Imagination: Principles and Procedures of Creative
Problem-Solving. Charles Scribner’s Sons, New York, USA, third revised edi-
tion, 1963.

[66] J. W. Osborne and A. Overbay. The power of outliers (and why researchers
should always check for them). Practical Assessment, Research & Evaluation,
9(6), 2004.
Retrieved May 5, 2009 from http://PAREonline.net/getvn.asp?v=9&n=6.

[67] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):206–230,
1987.

[68] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. In
Proceedings of the IEEE, volume 77, pages 81–98, January 1989.

[69] J. Raskin. The Humane Interface: New Directions for Designing Interactive
Systems. Addison-Wesley Professional, 2000.

[70] D. G. Rees. Essential statistics. CRC Press, fourth edition, 2001.

BIBLIOGRAPHY 144

[71] E. Rogers. VIA-RAD: a blackboard-based system for diagnostic radiology. Ar-
tificial Intelligence in Medicine, 7:343–360, 1995.

[72] K. Rudie. Control of discrete-event systems. Lectures for the ELEC843 course
at the Department of Electrical and Computer Engineering, Queen’s University,
Canada, 2002.

[73] K. Rudie. The integrated discrete-event systems tool. In Proceedings of the 8th
International Workshop on Discrete Event Systems, pages 394–395, Ann Arbor,
MI, USA, July 2006.

[74] E. A. P. Santos, J. E. R. Cury, and V. J. D. Negri. Modelagem das especi-
ficações operacionais de sistemas de manipulação e montagem automatizados.
In Śımposio Brasileiro de Automação Inteligente, pages 144–149, Bauru, São
Paulo, Brazil, 2003.

[75] E. A. P. Santos, V. J. D. Negri, and J. E. R. Cury. A computational model
for supporting conceptual design of automatic systems. In Proceedings of 13th
International Conference on Engineering Design, pages 517–524, Glasgow, UK,
August 2001.

[76] D. Shewa, J. Ashley, and L. Holloway. Spectool 2.4 Beta: A research tool for
modular modeling, analysis, and synthesis of discrete event systems. In Pro-
ceedings of the 8th International Workshop on Discrete Event Systems, pages
477–478, Ann Arbor, Michigan, USA, July 2006.

[77] H. A. Simon. Models of Man: Social and Rational. John Wiley and Sons, New
York, NY, USA, 1957.

[78] R. Spence. Information Visualization. Addison-Wesley, 2000.

[79] SUS scores from 129 conditions in 50 studies. Spreadsheet available at
http://measuringuserexperience.com/ (April 2009).

[80] H. J. M. Tabachneck-Schijf and H. A. Simon. Alternative representations of
instructional material. In D. Peterson, editor, Forms of representation, pages
28–46. Intellect Books, Exeter EX2 6AS, UK, 1996.

[81] P. Thagard. Mind: Introduction to Cognitive Science. The MIT Press, Cam-
bridge, Massachusetts, USA, second edition, 2005.

[82] J. G. Thistle and W. M. Wonham. Control problems in a temporal logic frame-
work. International Journal of Control, 44(4):943–976, 1986.

BIBLIOGRAPHY 145

[83] B. Tognazzini. Tog on Interface. Addison-Wesley Publishing Company, Inc.,
1992.

[84] T. Tullis and B. Albert. Measuring the User Experience. Morgan Kaufmann
Publishers, Burlington, MA, USA, 2008.

[85] T. S. Tullis and J. N. Stetson. A comparison of questionnaires for assessing web-
site usability. In Usability Professionals Association Conference, Minneapolis,
MN, USA, June 2004.

[86] UMDES software library. Department of Electrical Engineering and Computer
Science, University of Michigan, USA.
Available at http://www.eecs.umich.edu/umdes/.

[87] M. Van Selst and P. Jolicoeur. A solution to the effect of sample size on out-
lier elimination. The Quarterly Journal of Experimental Psychology Section A,
47(3):631–650, 1994.

[88] G. Wallas. The art of thought. Harcourt, Brace and Company, New York, USA,
1926.

[89] P. C. Wason. On the failure to eliminate hypotheses in a conceptual task. Quar-
terly Journal of Experimental Psychology, 12:129–140, 1960.

[90] P. C. Wason and P. N. Johnson-Laird. Psychology of Reasoning: Structure and
Content. Harvard University Press, Cambridge, MA, USA, 1972.

[91] B. L. Welch. The significance of the difference between two means when the
population variances are unequal. Biometrika, 29:350–362, 1938.

[92] W. A. Wickelgren. How to Solve Problems. W. H. Freeman and Co., San Fran-
cisco, CA, USA, 1974.

[93] W. M. Wonham. Supervisory control theory: Models and methods. Informal
talk at Queen’s University, a version for the 24th International Conference on
Application Theory of Petri Nets is available at
http://www.control.toronto.edu/DES/publish.html, 2003.

[94] W. M. Wonham. Supervisory control of discrete-event systems. Available at
http://www.control.toronto.edu/DES/, June 2008.

[95] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage
of a given language. SIAM Journal on Control and Optimization, 25(3):637–659,
1987.

BIBLIOGRAPHY 146

[96] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-
event systems. Mathematics of Control, Signals, and Systems, 1:13–30, 1988.

[97] M. M. Wood. Application, implementation and integration of discrete-event
systems control theory. Master’s thesis, Department of Electrical and Computer
Engineering, Queen’s University, 2005.

Appendix A

Problem Definitions

A.1 Practise Problem

This is a practise problem to remind you how to solve DES problems with IDES and
to help you improve your skills before the experimental session.

The problem is described as follows. There is a lady who lives with two dogs,
Toby and Ralf. Each dog has its own room where he spends the night, and he can go
in or out of his room. The dogs cannot open the doors to their rooms, so the woman
can stop them from going in or out. The food is served in the common area of the
house, so the dogs can only eat when they are outside their rooms. Ralf is a very
good dog and listens to the lady. She can tell him how much to eat. Toby is also
a good dog, but when it comes to food, he is uncontrollable. He can eat and eat as
long as there is food. Since Toby is so greedy, and could potentially eat Ralf’s share,
the lady decided that each day she must make sure that it is Ralf who eats first (he
gets only one share), and it is Toby who eats second (he can eat as much as he wants
as she cannot control him). Before any one of the dogs goes back into his room for
the night, both dogs must have eaten (Ralf once and Toby at least once). Both dogs
need to go to their rooms for the night.

Your tasks are:

• Create the models for the two dogs.

• Create the model for the control specification (Ralf eats first, Toby second; both
go to sleep but not before both having eaten).

• Compute the supervisory solution for the problem.

First, solve the problem with the classical approach, without using a Template
Design.

Then, solve the same problem using the Template Design methodology.

147

APPENDIX A. PROBLEM DEFINITIONS 148

You are encouraged to consult the conductor of the experiment if you need clari-
fication and/or assistance.

A.2 Problem 1: Factory Problem

Provide a discrete-event control solution to the problem of “Electronics
factory”

The initial situation is described as follows. There is a factory for electronic
components with two robots. Each robot can start processing a component and finish
processing it. There is control only over when the robots start processing components.
Robot 1 produces circuit boards, while robot 2 produces chips that are fitted onto
the boards further down the line. A circuit board is required when robot 2 outputs
a chip. Thus, a coordinator is in place which makes sure that the robots alternate in
producing boards and chips.

The new situation is described as follows. The factory has been modified to
fit two different chips on the same board. Robot 1 has received an upgrade. During
processing, it can detect defects in the circuit boards. Any time it detects a misaligned
hole, it can perform an additional corrective procedure (redrilling). As well, a third
robot has been installed to produce the second kind of chip. Robot 3 is of the same
type as robot 2 (it can start and finish processing). Further down the line, each
circuit board is fitted with one chip from robot 2 and one chip from robot 3. To
guarantee correct operation of the factory, it is sufficient to add one more coordinator
to guarantee that the outputs of robots 1 and 3 alternate as well.

Your tasks are the following.

• Model robot 3 and update the model of robot 1.

• Create the specification for the coordination of robots 1 and 3.

• Compute the supervisory solution for the system.

• Verify the correctness of the supervisory solution.

When you have completed all of the above tasks, please announce that you are
ready. In case you decide to stop before completing all tasks, please also make an
announcement.

Note: The models for robots 1 and 2 and for the coordination between the two
robots are provided to the subjects who solve this problem. Under the template
design condition, the template design for the problem is provided as well; otherwise
the following, similar printed conceptual diagram is provided.

APPENDIX A. PROBLEM DEFINITIONS 149

A.3 Problem 2: Spooler Problem

Provide a discrete-event control solution to the problem of “Device
coordinator”

The initial situation is described as follows. There is a computer network with two
clients (workstations), a printer and a fax machine. Each client can request access
to the printer and release the printer when done printing. There is control only over
when the clients are allowed to access the printer but not over when they release the
device. In order to avoid mingled printing jobs, there is a coordinator (spooler) in
place which makes sure that the two clients do not acquire access to the printer at
the same time.

The new situation is described as follows. A third client has been added to the
network, and the third client can request access to the fax machine and release the
fax machine when done transmitting data—similar to the operation of the other two
clients on the printer. As well, client 2 has been given permission to use the fax
machine in addition to the printer. Client 2 can now request either access to the
printer (and release it when done printing) or to the fax machine (and release it when
done transmitting data). Again, there is control only over the requests but not over
when the devices are released. Since it is necessary to guarantee the consistency of
transmitted data through the fax machine, a new coordinator is required. Similar
to the printer spooler, it has to prevent simultaneous access to the fax machine by
clients 2 and 3.

Your tasks are the following.

• Model client 3 and update the model of client 2.

• Create the specification for the coordination of clients 2 and 3.

• Compute the supervisory solution for the system.

• Verify the correctness of the supervisory solution.

APPENDIX A. PROBLEM DEFINITIONS 150

When you have completed all of the above tasks, please announce that you are
ready. In case you decide to stop before completing all tasks, please also make an
announcement.

Note: The models for clients 1 and 2 and for the printer spooler are provided to the
subjects who solve this problem. Under the template design condition, the template
design for the problem is provided as well; otherwise, the following, similar printed
conceptual diagram is provided.

Appendix B

Questionnaires

B.1 Feedback Questionnaire — Task 1

Please provide us with more information about your experience in solving the DES
problem.

Did you complete the solution to your satisfaction? [Yes/No]

Answer the following questions on a scale from 1 (very little) to 5 (very much).

How confident are you in the correctness of your model?
[1 2 3 4 5]

How confident are you in the correctness of the automatically generated supervisors?
[1 2 3 4 5]

How easy was it to learn the problem solving methodology which you used?
[1 2 3 4 5]

How easy was it to apply the problem solving methodology which you used?
[1 2 3 4 5]

What difficulties did you encounter during the process of problem solving?

What aspects of the problem solving process were easy to accomplish?

151

APPENDIX B. QUESTIONNAIRES 152

B.2 Feedback Questionnaire — Task 2

Please provide us with more information about your experience in solving the DES
problem.

Did you complete the solution to your satisfaction? [Yes/No]

Answer the following questions on a scale from 1 (very little) to 5 (very much).

How confident are you in the correctness of your model?
[1 2 3 4 5]

How confident are you in the correctness of the automatically generated supervisors?
[1 2 3 4 5]

How easy was it to learn the problem solving methodology which you used?
[1 2 3 4 5]

How easy was it to apply the problem solving methodology which you used?
[1 2 3 4 5]

What difficulties did you encounter during the process of problem solving?

What aspects of the problem solving process were easy to accomplish?

Which methodology for solving DES control problems would you use in the future,
given the choice?
[Classical approach/Template Design]

In your opinion, what is the biggest contribution, if any, of the Template Design
methodology to DES problem solving?

